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Abstract

Linear signal transforms (such as the discrete Fourier transform) are frequently used in digital signal

processing and related fields. Algorithms for computing linear transforms are well-understood and

typically have a high degree of regularity and parallelism, making them well-suited for implemen-

tation as sequential datapaths on field-programmable gate arrays or application-specific integrated

circuits. Nonetheless, transforms are difficult to implement due to the large number of algorithmic

options available and ways that algorithms can be mapped to sequential datapaths. Further, the

best choices depend heavily on the resource budget and performance goals of the target application.

Thus, it is difficult for a designer to determine which set of options will best meet a given set of

requirements.

This thesis proposes the Spiral hardware generation framework, a hardware compilation and op-

timization tool based on a mathematical formula language. A formula written in this language spec-

ifies a particular transform algorithm executed using a particular sequential datapath. This language

allows high-level representation of sequential hardware structures that reuse datapath elements mul-

tiple times in the computation of a transform. The language accomplishes this by providing a formal

connection between structure in the algorithm and sequential reuse in the datapath. This proposed

language drives a hardware compilation system that takes as input a problem specification with di-

rectives that define characteristics of the desired datapath; the system then automatically generates

an algorithm, maps the algorithm to a datapath, and outputs synthesizable register transfer level

Verilog.

This thesis evaluates the generated designs when synthesized for field-programmable gate array

or application-specific integrated circuit. Its evaluations consider designs across multiple trans-

forms, datatypes, and design goals, and its results show that Spiral is able to automatically provide

i



ii

a wide tradeoff between cost (e.g., area, power) and performance. This tradeoff space compares

well with existing benchmarks, but allows the designer much more flexibility to find the design best

suited to his or her needs.
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Chapter 1

Introduction

1.1 Motivation

Linear signal transforms such as the discrete Fourier transform or discrete cosine transform are

ubiquitous in digital signal processing (DSP), scientific computing, and communication applica-

tions. Algorithms for computing linear transforms are highly structured and regular, and they ex-

hibit large amounts of parallelism. For these reasons, algorithms in this domain are well-suited

for hardware implementation as a sequential datapath on a field-programmable gate array (FPGA)

or application-specific integrated circuit (ASIC). This inherent algorithmic structure leads to a large

amount of freedom in the way a given algorithm maps to a datapath. Coupled with the fact that mul-

tiple algorithmic options are typically available for a given transform, this means that the combined

algorithm/datapath space is far too large for a designer to explore easily.

Further, the algorithmic and datapath options are mutually restricting; the best choice in one

domain depends on which choices are made in the other. However, designers typically do not have

the tools available to reason about both sets of options at once. Moreover, the best choices for

both algorithm and datapath structure are highly dependent on the context: an application’s specific

performance goals and cost requirements.

Typically, a designer attempting to build a customized hardware implementation of a linear sig-

nal transform will alternate between: (a) exploring algorithms to be executed on a specific type of

datapath, and (b) exploring different datapaths to execute a specific type of algorithm. Either way,

the designer reasons about one portion of the problem while keeping an implicit mapping between

1



1.2. Thesis Overview 2

algorithm and datapath in his or her mind. This human-driven exploration process is difficult and

slow, and few designers have the required experience with both algorithm and hardware design do-

mains needed to arrive at the options best suited for their application requirements. Often, designers

resort to using solutions from IP vendors that provide common designs across a few cost/perfor-

mance tradeoff points.

1.2 Thesis Overview

This thesis addresses these problems by introducing a high-level mathematical framework for auto-

matically generating customized hardware implementations of linear DSP transforms. This system

covers a wide range of algorithmic and datapath options and frees the designer from the difficult

process of manually performing algorithmic and datapath exploration. The designs produced cover

a wide cost/performance tradeoff space and are competitive with good hand-designed implementa-

tions. The system’s automated nature allows easy exploration of a wide space of options without

sacrificing the quality of the resulting design.

The key to the proposed system is a domain-specific formula-based language for specifying

transform algorithms and sequential datapaths on which to execute them. This language extends the

language in [1] to include datapath concepts such as parallelism and explicit datapath reuse, which

the designer specifies at a high level of abstraction. A single formula in this extended language

specifies one particular algorithm and one specific sequential datapath on which to execute it.

This mathematical language drives a full compilation system that begins with a problem speci-

fication and produces a synthesizable register-transfer level Verilog description. This system begins

by taking as input a linear signal transform of a given size as well as high-level hardware direc-

tives that describe qualities of the desired datapath. Then, the system utilizes a base of algorithmic

knowledge to construct a formula that specifies a transform algorithm. Next, the formula is rewritten

(based on user-provided directives) to produce a hardware formula that explicitly specifies a datap-

ath with sequential reuse of hardware structures. Lastly, the system maps the hardware formula to a

corresponding synthesizable register-transfer level Verilog description.

An important challenge in mapping from formula to sequential datapath lies in the hardware

implementation of permutations (fixed reorderings of data, commonly occurring in transform algo-
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rithms). Permutations are difficult to perform on streaming data because the system must buffer and

reorder data elements distributed over a number of cycles. This thesis includes a flexible param-

eterized architecture for performing any given streaming permutation as well as a discussion and

evaluation of the applicability of previous, less flexible methods.

Additionally, this thesis includes an evaluation of designs produced using the proposed gener-

ation framework across several transforms (such as the discrete Fourier transform, discrete cosine

transform, and others) and two datatypes (single precision floating point and 16 bit fixed point are

evaluated here). Results are obtained by synthesizing for FPGA (Xilinx Virtex-6) and ASIC (tar-

geting a commercial 65nm standard cell library). The FPGA results compare performance with

resources required, while the ASIC results compare performance with power and area. Results

show that Spiral is able to generate designs across a range of cost/performance tradeoffs.

One application for the designs produced using the proposed system is orthogonal frequency-

division multiplexing (OFDM) for optical interconnects. Optical OFDM has recently been studied

as a way to reduce the complexity and cost of optical components for short distance links (for exam-

ple, in data centers) [2] or to improve long-distance transmission performance (telecommunications

applications) [3]. Optical OFDM depends heavily on the discrete Fourier transform and imposes

a high throughput requirement on it. This thesis includes a study of real-time implementations of

optical OFDM, using hardware cores automatically generated by the proposed framework.

1.3 Contributions

To summarize, the contributions of this thesis include:

• a formula-based language for specifying transform algorithms and corresponding sequential

datapaths,

• an automatic compilation tool that produces synthesizable register-transfer level Verilog,

• a parameterized, scalable architecture capable of performing any fixed streaming permutation,

• an evaluation of the designs produced using this system, spanning multiple transforms, data

types, and platforms, and
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• an application study of real-time implementations of optical OFDM using generated designs.

1.4 Organization

This thesis is organized as follows. Chapter 2 describes relevant background material on linear

transforms, their algorithms, and algorithmic specification in the aforementioned formula language.

Then, Chapter 3 explains the proposed mathematical formula language for describing sequentially

reused datapaths. Next, Chapter 4 outlines the automatic compilation process and describes each

step from transform to formula to hardware implementation. Chapter 5 discusses one important

compilation problem: implementing permutations on streaming data. It presents a proposed flexible

solution for any fixed streaming permutation. Chapter 6 examines transform algorithms in this

context and illustrates the correspondence between algorithmic and datapath structures. Chapter 7

evaluates the designs produced with this methodology on FPGA and ASIC. Chapter 8 presents

an application study where generated cores for the discrete Fourier transform are utilized within

real-time systems implementing orthogonal frequency-division multiplexing (OFDM) for optical

networks. Lastly, Chapter 9 examines related work and Chapter 10 presents concluding remarks.



Chapter 2

Background: Linear Transforms and

Algorithms

This chapter presents background material on linear transforms and fast algorithms for their com-

putation. First, Section 2.1 defines linear transforms and gives relevant examples. Then, Section 2.2

shows how a mathematical formula language can specify transform algorithms and how formulas

written in it are directly translated to combinational datapaths. This algorithm-specification lan-

guage explicitly captures regularity or repetition within algorithms. Later, Chapter 3 will show how

this regularity leads to hardware structures with explicit datapath reuse. Lastly, Section 2.3 defines

the algorithms considered in this thesis.

2.1 Linear Transforms

A linear transform on n points is defined by a dense n × n matrix. Applying the transform to

an n point input vector is then a matrix-vector multiplication. For example, the discrete Fourier

transform on n points is defined as y = DFTn x, where x and y are respectively n point input and

output vectors, and

DFTn = [ωkℓ
n ]0≤k,ℓ<n, ωn = e−2πi/n.

In this notation, DFTn is an n × n matrix, and k and ℓ represent the row and column of a given

element (respectively). Thus, computing a four-point DFT (with input vector x and output vector

5
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y) is the matrix-vector product:












y0

y1

y2

y3












=












1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i












·












x0

x1

x2

x3












.

Direct computation of a linear transform by definition requires O
(
n2
)

arithmetic operations.

2.1.1 Discrete Fourier Transform

The discrete Fourier transform and its inverse are defined:

DFTn =

[

ωkℓ
n

]

0≤k,ℓ<n

, ωn = e−2πj/n (2.1)

IDFTn = (1/n) ·

[

ω−kℓ
n

]

0≤k,ℓ<n

. (2.2)

Also note that

DFTn = (DFTn)T.

That is, the DFT matrix is symmetric.

2.1.2 Two-Dimensional Discrete Fourier Transform

DFT -2Dn×n = DFTn⊗DFTn, (2.3)

where ⊗ is the tensor or Kronecker product, defined:

B ⊗A = [bk,ℓA], where B = [bk,ℓ].

2.1.3 Real Discrete Fourier Transform

When the DFT, which is a complex transform, is performed on real input data (length n), the result

is an n point complex output vector with conjugate-even symmetry. Thus, half of its output data is

redundant. The real discrete Fourier transform, or RDFT, exploits this property by computing only
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the non-redundant outputs, and packing them into a real n point output vector. Depending on the

ordering of the output vector, there can be multiple definitions of the RDFT. This thesis uses the

following definition for RDFT:

RDFTn =













1 1 1 1 . . . 1

1 −1 1 −1 . . . −1





cos 2πkℓ
n

sin 2πkℓ
n






0<k<n/2, 0≤ℓ<n













. (2.4)

2.1.4 Discrete Cosine Transform Type 2

There are multiple related types of discrete cosine transforms (DCTs) and discrete sine transforms

(DSTs). This thesis considers the most common, the DCT of type two, defined:

DCT-2 =

[

cos k(2ℓ+1)π
2n

]

0≤k,ℓ<n

. (2.5)

The DCT-2 is easily converted to other related transforms:

DCT-3n = (DCT-2n)−1 = (DCT-2n)T

DST-2n =









1

. .
.

1









·DCT-2n ·
















1

−1

1

−1

. . .
















DST-3n = (DST-2n)−1 = (DST-2n)T

The algorithms that are later presented for DCT-2 can easily be converted to DCT-3, DST-2 and

DST-3 in this way.
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2.2 Formula Representation of Transform Algorithms

Fast transform algorithms enable the computation of an n point transform using O
(
n log n

)
arith-

metic operations. The term “fast Fourier transform” refers to such an algorithm for computing the

discrete Fourier transform. A fast transform algorithm can be expressed as a decomposition of the

n× n transform matrix into a product of structured sparse matrices. For example,

DFT4 =












1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i























1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1























1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1












. (2.6)

Thus, computing y = DFT4 ·x is equivalent to multiplying the data vector by each matrix from right

to left. A fast algorithm decomposes an n × n transform matrix into a product of sparse matrices

(O
(
log n

)
many), each which requires O

(
n
)

operations. Thus, multiplying the input vector by each

of these sparse matrices requires O
(
n log n

)
operations.

The Kronecker product formalism developed in [1] uses linear algebra concepts to mathemat-

ically represent fast transform algorithms by capturing the structure within the sparse matrices of

the decomposition. This formalism can serve as the basis for a language that represents transform

algorithms as formulas, where each term in the formula has a corresponding dataflow interpreta-

tion. Thus, a formula in this language can be directly translated into a combinational hardware

implementation.

In Backus-Naur form, this language is defined as follows:

matrixn::=matrixn · · ·matrixn

|
∏

ℓ matrixn

| Ik ⊗matrixm where n = km
| Ik ⊗ℓ matrixm where n = km
| basen

basen ::=Dn = diag(d0, . . . , dn−1) | Pn | An

This language is a subset of the signal processing language (SPL) used in Spiral, a program

generator for software implementations of linear transforms [4, 5].
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!
Bn Anx y

(a) An ·Bn

A2

A2

x0

x3

x2

x1

y0

y3

y2

y1

(b) I2 ⊗A2

x0

x3

x2

x1

d0

d1

d2

d3

y0

y3

y2

y1

(c) D4

x0

x3

x2

x1

y0

y3

y2

y1

(d) P4 = L4
2

+

-

x0

x1

y0

y1

(e) A2 = DFT2

DFT2

x0

x3

x2

x1

i

y0

y3

y2

y1

DFT2

DFT2

DFT2

(f) DFT4 = L4
2 · (I2 ⊗DFT2) · L

4
2 · T

4
2 · (I2 ⊗DFT2) · L

4
2

Figure 2.1: Examples of formula elements and their corresponding combinational datapaths.

Next, the following subsections explain each portion of the language, and illustrate the combi-

national hardware interpretation of each term (in Figure 2.1).

2.2.1 Matrix product

A matrix formula can be decomposed into a product (line 1) or iterative product (line 2) of matrix

formulas. Figure 2.1(a) illustrates: if y = (AnBn) · x, then input vector x first is transformed by

Bn, then by An to produce output vector y. Note that the matrices are applied to the data vector

from right to left.

The iterative product
∏

is important because it allows the explicit specification of repeated

stages that are identical or related. Chapter 3.2 discusses how this repetition is exploited to represent

explicit datapath reuse in the proposed hardware compilation and optimization framework.
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2.2.2 Tensor product

Line 3 shows that a matrix formula can include the tensor (or Kronecker) product of matrices. The

⊗ operator is the tensor product operator, defined:

B ⊗A = [bk,ℓA], where B = [bk,ℓ].

Ik is the k × k identity matrix, so

Ik ⊗Am =












Am

Am

. . .

Am












,

a km× km matrix that is block-diagonal. When Ik ⊗Am is interpreted as dataflow, the Am matrix

is applied k times in parallel to consecutive regions of the km-length input vector. Figure 2.1(b)

illustrates this for k = 2, m = 2.

Line 4 illustrates an indexed version of the tensor product:

Ik ⊗ℓ Am
ℓ =












Am
0

Am
1

. . .

Am
k−1












,

where the index variable ℓ parameterizes the A matrix.

Although this language only supports the tensor product where the left term is the identity

matrix, simple identities rewrite some other structures into this form. For example:

Am ⊗ Ik = Lkm
m (Ik ⊗Am)Lkm

k , (2.7)
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where L is the stride permutation matrix defined in (2.8), below. Further,

Bk ⊗Am = (Bk ⊗ Im)(Ik ⊗Am)

= Lkm
k (Im ⊗Bk)L

km
m (Ik ⊗Am).

The regularity expressed by Ik ⊗ Am is critical to the hardware generation and optimization

method proposed in this work. Section 3.1 shows how the regularity represented by this formula is

exploited to represent explicit datapath reuse.

2.2.3 Diagonal matrices

This language contains three classes of base matrices. First are diagonal matrices, written Dn. A

diagonal matrix is one that contains non-zero elements only along its main diagonal:

Dn = diag (d0, d1, . . . , dn−1) =












d0

d1

. . .

dn−1












,

where the dℓ are constants. Multiplying a vector by Dn results in scaling each element by one

constant. Figure 2.1(c) illustrates this for D4. This thesis uses Dn to represent any generic diagonal

matrix of size n. A diagonal matrix can be defined with a parameter, for example Dn
ℓ , where ℓ can

be the index variable of an indexed tensor product or iterative product.

2.2.4 Permutations

The second class of base matrix is comprised of permutations, or fixed reorderings of data elements.

Pn denotes a permutation on n points. As combinational logic, this is implemented as a re-ordering

of data by shuffling wires. Figure 2.1(d) illustrates this for a particular permutation on four points.

This thesis uses Pn to represent an arbitrary n point permutation; other letters will be used to

define other permutations in transform algorithms. A permutation can be viewed as a matrix or as a

mapping on the indices of data elements. For example, Ln
m represents the stride-by-m permutation
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on n points, which permutes data according to

Ln
m : i · (n/m) + j 7→ j ·m + i, 0 ≤ i < m, 0 ≤ j < n/m, (2.8)

where in + j represents the given output index, and jm + i is the corresponding input index. For

example,

L8
2 =


























1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


























Another important permutation is the base-r digit reversal permutation on n points: Rn
r .

Rrt

r =
t−1∏

ℓ=0

(Irt−ℓ−1 ⊗ Lrℓ+1

r ). (2.9)

When r = 2, this permutation is called the bit reversal permutation.

2.2.5 Computational kernels

The final class of base matrices is comprised of computational kernels Matrix An denotes a generic

n × n computational kernel that takes in n data elements and produces n output elements. Typi-

cally, such a kernel is only used when n is small; a combinational datapath is formed by directly

implementing a matrix-vector multiplication. One example of such a kernel is

DFT2 =






1 1

1 −1




 ,

which is illustrated in Figure 2.1(e). Computational kernels can also be parameterized by index

variables: An
ℓ .
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2.2.6 Example

A linear transform algorithm specified in this language can be directly mapped to a combinational

datapath. For example, the Cooley-Tukey FFT (fast Fourier transform) [6] can be written as

DFTmn = Lmn
m · (In ⊗DFTm) · Lmn

n · Tmn
n · (Im ⊗DFTn) · Lmn

m , (2.10)

where Lmn
m is the stride permutation (2.8), Tmn

n is a diagonal matrix of “twiddle factors” (as speci-

fied in [7]):

Tmn
n =

m−1⊕

k=0

(
n−1⊕

ℓ=0

ωkℓ
mn

)

, ωn = e−2πi/n, (2.11)

and
⊕

is the direct sum operator. So,

T 4
2 =

1⊕

k=0

(
1⊕

ℓ=0

ωkℓ
4

)

=
1⊕

k=0

(

ωk·0
4 ⊕ ωk·1

4

)

= ω0·0
4 ⊕ ω0·1

4 ⊕ ω1·0
4 ⊕ ω1·1

4

= diag(1, 1, 1, i).

Figure 2.1(f) shows the corresponding combinational datapath for this algorithm when n = 2 and

m = 2. Again, note that the matrices are applied from left to right.

2.3 Transform Algorithms

This section uses the mathematical language defined in Section 2.2 to specify the transform algo-

rithms considered in this thesis. Later, Chapter 6 will explain how these algorithms fit within the

proposed hardware/algorithm specification language, and Chapter 7 will evaluate implementations

of the algorithms.

2.3.1 Discrete Fourier Transform

O
(
n log n

)
algorithms for the DFT are often called fast Fourier transforms, or FFTs. Note that the

DFT is symmetric, so alternate versions of these algorithms may be obtained by transposing the

final formula, using property (AB)T = BTAT. Additionally, these algorithms can be converted

into algorithms for the IDFT by taking the complex conjugate and scaling as defined in (2.2).
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Cooley-Tukey FFT. The Cooley-Tukey FFT (fast Fourier transform) algorithm [6] recursively

decomposes a DFT of size mn into DFTs of size m and n. It is given by

DFTmn = Lmn
m · (In ⊗DFTm) · Lmn

n · Tmn
n · (Im ⊗DFTn) · Lmn

m , (2.12)

where L and T are as defined previously.

Pease FFT. The Pease FFT [8] is an iterative algorithm for the DFT that can be derived from

the Cooley-Tukey FFT (as shown in [9]). It is given by

DFTrt =

(
t−1∏

ℓ=0

Lrt

r · (Irt−1 ⊗DFTr) · C
rt

ℓ

)

·Rrt

r , (2.13)

where C is a diagonal matrix of twiddle factors:

Crt

ℓ = Lrt

rt−ℓ−1 · (Irℓ ⊗ T rt−ℓ

rt−ℓ−1) · L
rt

rℓ+1 ,

where L, R and T are as defined previously.

Here, the DFT of size rt is computed by first reordering data, then passing through t stages,

each which scales data, performs parallel DFTr computations, and then reorders the data with Lrt

r .

Parameter r is called the radix. Higher radices give fewer stages, but each stage is more com-

plicated. As the radix increases, the arithmetic cost of the algorithm decreases, because fewer

non-trivial multiplications are performed (although the improvement diminishes as r increases).

A key characteristic of the Pease FFT is that the data vector is accessed in the same order in

each of the t iterations. In the formula, this can be seen in the fact that only the diagonal matrix C

depends on iteration index ℓ. Thus, the only change from stage to stage is in the constants the data

vector is scaled by.

Figure 2.2 illustrates the dataflow for the Pease algorithm for DFT23 :

(
2∏

ℓ=0

L8
2 · (I4 ⊗DFT2) · C

8
ℓ

)

·R8
2.

The formula is read from right to left, but the dataflow is drawn from left to right. So, Figure 2.2

takes in input vector x on the left, passes it through permutation R8
2, then through three stages
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Figure 2.2: Pease FFT dataflow for DFT23 .

(indicated with shaded background). Each stages performs a scaling by a diagonal matrix C, four

parallel DFT2 computations, and permutation L8
2. Note that multiplications by 1 are omitted from

the diagram, and that C8
0 = I8.

Iterative Cooley-Tukey FFT. Similar to the Pease FFT, the Iterative Cooley-Tukey algorithm

can also be derived from (2.12), but it results in a different structure.

DFTrt =

(
t−1∏

ℓ=0

(Irℓ ⊗DFTr ⊗Irt−ℓ−1) · (Irℓ ⊗ T rt−ℓ

rt−ℓ−1)

)

·Rrt

r , (2.14)

where all matrices are as previously defined. By utilizing the property given in (2.7) and restructur-

ing terms, this algorithm can be expressed

DFTrt = Lrt

r

(
t−1∏

ℓ=0

(Irt−1 ⊗DFTr)
(

Irℓ ⊗
(

Ert−ℓ

ℓ ·Qrt−ℓ

ℓ

))
)

Rrt

r , (2.15)

where E is a diagonal matrix of twiddle factors:

Ert−ℓ

ℓ = Lrt−ℓ

rt−ℓ−1 · T
rt−ℓ

rt−ℓ−1 · L
rt−ℓ

r ,
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and Q is a product of two stride permutations:

Qrt−ℓ

ℓ = Lrt−ℓ

rt−ℓ−1 · (Ir ⊗ Lrt−ℓ−1

r ).

This thesis will utilize the restructured algorithm (2.15), and refer to it as the Iterative FFT. This

algorithm is similar to the Pease FFT: both compute DFTrt using t stages, each stage consisting

of a permutation, a scaling by constants, and parallel DFTr computations. However, there is one

important difference: in each iteration, the Pease algorithm performs a permutation on rt points

and multiplies the vector by an rt point diagonal matrix. In contrast, the permutation and diagonal

matrix in this algorithm grow smaller as the stages progress. This means in stage ℓ, the algorithm

performs rℓ parallel permutations on rt−ℓ points. Chapter 6 will show how these differences lead to

a different type of hardware implementations than are obtained from the Pease algorithm.

Figure 2.3 illustrates the dataflow for the Iterative FFT algorithm for DFT23 :

DFT23 = L8
2

(
2∏

ℓ=0

(I4 ⊗DFT2)
(

I2ℓ ⊗
(

E23−ℓ

ℓ ·Q23−ℓ

ℓ

))
)

R8
2.

Again, the formula is applied from right to left, while the diagram takes its input x on the left side

and produces its output y on the right. First, the data vector is permuted by R8
2. Then, it goes

through three stages, separated with shaded boxes. Note that the first stage consists only of one

column of I4 ⊗DFT2, because E2
2 and Q2

2 are both equal to I2 and thus do not require hardware.

Mixed-radix FFT. The mixed-radix algorithm (based on (2.12)) breaks down a DFT of size

rksℓ into multiple DFTs of sizes rk and sℓ:

DFTrksℓ = Lrksℓ

rk · (Isℓ ⊗DFTrk) · Lrksℓ

sℓ · T rksℓ

sℓ · (Irk ⊗DFTsℓ) · Lrksℓ

rk . (2.16)

Then, the DFTrk and DFTsℓ matrices are decomposed using radix r and s algorithms such as (2.13)

or (2.15).

Bluestein. The Bluestein FFT [10] is a convolution-based algorithm for any problem size n. It

is typically used when the problem size makes it difficult or impossible to perform with the other

algorithms. The Bluestein algorithm performs the DFT by scaling the input vector and convolving

it with pre-computed coefficients. The convolution of two n length signals can be performed as
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Figure 2.3: Iterative FFT dataflow for DFT23 .

point-wise multiplication of length m > 2n− 1 in the frequency domain. This allows a DFT of any

given size to be computed using DFTs of two-power size, at the expense of additional operations.

This algorithm is given by:

DFTn = D
(2)
n×m · IDFTm ·D

(1)
m ·DFTm ·D

(0)
m×n, (2.17)

where m = 2⌈log2(n)⌉+1 is the smallest power of two greater than 2n − 1, and the D matrices

are diagonal matrices that scale the vector by constant values. D
(0)
m×n and D

(2)
n×m are rectangular

matrices, so in addition to scaling the data, D
(0)
m×n extends the input data vector from n points to m

points (by zero padding), and D
(2)
n×m shortens the output data vector from m points to n points (by

discarding unneeded data).
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2.3.2 Two-Dimensional Discrete Fourier Transform

Using the definition of the two-dimensional DFT and a property of the tensor product, the row-

column algorithm can be derived:

DFT -2Dn×n = (In ⊗DFTn) · Ln2

n · (In ⊗DFTn) · Ln2

n

=
1∏

ℓ=0

(

(In ⊗DFTn) · Ln2

n

)

(2.18)

Then, one-dimensional DFT algorithms such as (2.13), (2.15), or (2.16) can be used to compute the

DFTn.

Other algorithms for computing multi-dimensional DFT not considered in this thesis include

the vector-radix algorithm [11] and the Dimensionless FFT algorithm [12].

2.3.3 Real DFT

Complex half-size Real DFT. An RDFT of size n can be computed using a complex DFT of size

n/2 and a post-processing step, as shown in [13]:

RDFTn =
(
(K ′n

2 ⊗ I2) ·
(
In/4 ⊗ℓ A4(ℓ)

)
· ((K ′n

2 )−1 ⊗ I2)
)
·DFTn/2, (2.19)
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where

A4(0) =












1 1 0 0

1 −1 0 0

0 0 1 0

0 0 0 1












,

A4(ℓ 6= 0) = diag(1, 1, 1,−1) · (F2 ⊗ I2) ·












1/2

1/2

c −s

s c












· L4
2 ·












1 0 1 0

0 1 0 1

0 1 0 −1

−1 0 1 0












,

c = cos(2π · ℓ/n)/2, s = sin(2π · ℓ/n)/2,

F2 =






1 1

1 −1




 ,

K ′km
m = (Ik+1 ⊕ Jk−1 ⊕ Ik+1 ⊕ Jk−1 . . . )Lkm

m ,

Jn is the n×n identity matrix with columns reversed, and DFTn/2 converts an n/2×n/2 complex

matrix into a n× n real matrix by replacing each complex element a + bi with






a −b

b a




 .

This algorithm works by packing the n real data as n/2 complex data, performing a complex

DFTn/2 using the DFT algorithms presented above in Chapter 2.3.1. Then it permutes data by

(K−1⊗ I2), performs one column of computational blocks (A), and finally permutes the data again

to output data.

One way to reduce the cost of this implementation is to merge the rightmost permutation stage

(K−1 ⊗ I2) with the output permutation on the DFT algorithm. For example, the iterative Cooley-

Tukey algorithm (2.15) contains a stride permutation L on its output side, which can be merged

directly. Or, the Pease algorithm (2.13) can be transposed, moving the R permutation to the output

side (noting that Rn
r = (Rn

r )T).
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Although this algorithm has higher arithmetic cost over the native RDFT algorithms presented

next, it is useful because all optimizations for the DFT can be immediately applied.

Native RDFT Algorithm: Cooley-Tukey-type. Based on the framework in [13], three algo-

rithms for the RDFT can be defined, similar in structure to the Cooley-Tukey, Pease, and Iterative

Cooley-Tukey FFTs (as shown in (2.12), (2.13), and (2.15), respectively). All three algorithms use

a helper transform rDFT(u), where

RDFTn = (F2 ⊕ In−2) · rDFTn(0).

First, a recursive algorithm is defined that will be used as the basis for two iterative algorithms.

rDFT2km(u) = 〈K2km
m |K ′2km

m 〉u





k−1⊕

j=0

rDFT2m(rk(u, j))



 (rDFT2k(u)⊗ Im) (2.20)

rk(u, j) =







j/2k, u = 0,

(u + ⌊j/2⌋)/k, u 6= 0 and j even,

(1− u + ⌊j/2⌋)/k, u 6= 0 and j odd

K2km
m = ((Ik ⊕ Jk ⊕ Ik ⊕ Jk . . . )Lkm

m )⊗ I2,

K ′2km
m = ((Ik ⊕ Zk ⊕ Ik ⊕ Zk . . . )Lkm

m )⊗ I2,

Zk = (I1 ⊕ Jk−1),

〈 A | B 〉i =







A, i 6= 0

B, i = 0

,
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where J is I with the column order reversed. The base cases are given by:

rDFT4(0) = (F2 ⊗ I2) ,

rDFT4(u 6= 0) =












1

1

1

−1












· rDFT4(0) ·












1

1

c −s

s c












· L4
2,

c = cos(πu), s = sin(πu).

Native RDFT Algorithm: Constant Geometry. By left-expanding and applying identities to

algorithm (2.20), the following constant geometry RDFT algorithm can be derived. Let the problem

size be 2km, where m = kp, p ≥ 1. Let q = logk m. The algorithm’s radix is 2k.

rDFT2km(0) = V 2km
k,m





logk m
∏

i=0

(Im ⊗ℓ rDFT2k(sk,q(0, 0, fk,m(i, ℓ)))L2km
2m



L2km
km , (2.21)

where

fk,m(i, ℓ) = ℓ mod m/ki,

sk,q(d, u, f) =







u, d = q

rk(sk,q(d + 1, u, f), ⌊(f mod kd+1)/kd⌋), d 6= q

V 2km
k,m =





logk m−1
∏

ℓ=0

(

K
′m/k(ℓ−1)

m/kℓ ⊕
(

Ikℓ−1 ⊗K
m/k(ℓ−1)

m/kℓ

))



⊗ I2

The algorithm begins with a stride permutation, followed by logk m + 1 stages, each with a permu-

tation and a radix 2k computational basic block. This block (rDFT2k(...)) is computed using the

base case above when k = 2, and using (2.20) otherwise. The structure of this algorithm is called

constant geometry because the permutation L2km
2m is the same in each stage.

Native RDFT Algorithm: Iterative. Also derived from (2.20) is the following iterative algo-

rithm. Let the problem size be 2km, where m = kp, p ≥ 1. Let q = logk m. Again, the algorithm’s
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radix is 2k.

rDFT2km(0) = V 2km
k,m ·

(
q
∏

i=0

(

Im/ki ⊗W 2·ki+1

i

)

(2.22)

·
(
Im ⊗ℓ rDFT2k(sk,q−i(0, 0, ⌊ℓ/ki⌋))

)

)

· L2km
m ,

where W is a product of stride permutations:

W 2·ki+1

i6=0 =
(

Ik ⊗ L2·ki

ki−1

)

· L2·ki+1

2k ,

W 2·ki+1

0 = I2k,

and V and s() are as defined above.

This algorithm is similar to the constant geometry RDFT algorithm (2.21). However, un-

like (2.21), this algorithm’s permutation W grows more local as the algorithm is performed (that

is, as i decreases). So, its different stages have different geometry, but the interconnections do not

need to span the entire data vector in all stages. The relationship between this algorithm and the

constant geometry RDFT algorithm is similar to the relationship between the Iterative and Pease

FFT algorithms (2.15) and (2.13).

2.3.4 Discrete Cosine Transform

An algorithm for the DCT of type 2 that is well-suited for hardware implementation is given in [14].

DCT-22k =

√

2

2k
· U2k ·

(
0∏

s=k−1

S
(s)

2k (I2k−s−1 ⊗ L2s+1

2s )

)

PH
2k . (2.23)

Matrices U and PH represent permutations, and S represents one stage of computation, consisting

of a 4 point basic block and a diagonal matrix. The full specification of this algorithm is given

below.

The structure of this algorithm is similar to the FFT algorithm given in (2.15). It computes a

transform of size n in log2(n) stages, each of which reorders data and performs a small computa-

tional kernel. The added complexity comes from the M and H matrices, which perform an extra

subtraction and data reordering in some basic blocks.
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Using the properties of the DCT and DST given in Chapter 2.1.4, this algorithm can easily be

used to produce implementations of DCT-3, DST-2, and DST-3. Other similar algorithms can be

found in [15] and [16].

Unlike the other algorithms examined in this thesis, this DCT algorithm is defined only for a

fixed radix size (two).

Full specification of algorithm (2.23). Matrix S represents one stage of computation, parame-

terized by stage s:

S
(s)

2k = (I2k−1 ⊗ℓ M
(s,ℓ)
2 ) · diag(gk(ℓ, s)) · (I2k−2 ⊗ℓ H

(s,ℓ)
4 ) · (I2k−1 ⊗ F2),

where

M
(s,ℓ)
2 =






1 0

−µs(ℓ) 1




 , µs(ℓ) =







0, ℓ mod 2s = 0,

1, ℓ mod 2s 6= 0

gk(ℓ, s) = (2µs(⌊ℓ/2⌋)d(2k−s−1 + ⌊ℓ/2s+1⌋))fk(ℓ,s)

d(ℓ) = cos((hK(ℓ−K) + 1/2)π/2K), K = 2⌊log2 ℓ⌋

h1(0) = 0, h2N (2ℓ) = hN (ℓ), h2N (2ℓ + 1) = 2N − 1− hN (ℓ)

fk(ℓ, s) = (ℓ mod 2) + (1− τ0(ℓ))(1− τk−1(s))

τℓ(s) =







0, s = ℓ

1, s 6= ℓ

H
(s,ℓ)
4 =












1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0












µs−1(ℓ)

F2 =






1 1

1 −1
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Permutations U and PH are:

U2k =
k−2∏

ℓ=0

(I2k−ℓ ⊕ (I2k−2−2k−ℓ ⊗ (I2 ⊕ J2))) · (I2ℓ ⊗ L2k−ℓ

2k−ℓ−1),

PH
2k = [n = h2k(m)]m,n=0,1,...,2k−1,

where h2k(m) is as defined above, and J is the identity matrix with columns reversed.



Chapter 3

Formula-Based Datapath

Representation

The language described in the previous section can represent a wide range of algorithms, but it

does not represent sequential reuse of datapath components, where one computational block is used

multiple times while computing a single problem. Sequential reuse is necessary since the combi-

national datapaths realized in Chapter 2 are often too large for practical implementation for all but

the smallest transform sizes. This chapter describes extensions to this formula language to repre-

sent two types of sequential reuse that are relevant for hardware designs. The result is a hardware

language that allows explicit datapath description at the formula level. Later, this thesis shows that

this extended language drives the proposed compilation system, and that it allows description and

generation of a wide tradeoff space.

The work described in this section was presented in part in [17].

3.1 Streaming Reuse

Streaming reuse restructures a datapath with parallel computation blocks into a smaller datapath

where data stream through the system over multiple cycles.

As shown in Section 2.2, the tensor product Im ⊗ An results in m data-parallel instantiations

of the block An (Figure 3.1(a)). However, other structures can also perform the same computa-

tion. For example, the tensor product can be interpreted as reuse in time (rather than parallelism in

25



3.1. Streaming Reuse 26

n

size

(m × n)

vector ..
.

An

n An

n An

..
.

(a) No streaming reuse: Im ⊗An.

n words

per cycle An

… 

m cycles

one streamed vector,

size (m × n)

(b) Full streaming reuse: Im ⊗
sr An.

n An

… 

mn/w cycles

n An

… 

..
.

(w
/n

) b
lo

ck
s

w words

per cycle

(c) Partial streaming reuse: Imn/w ⊗
sr
(
Iw/n ⊗An

)
.

Figure 3.1: Examples of streaming reuse.

space). Then, one can build a single instance of block An and reuse it over m consecutive cycles

(Figure 3.1(b)). Rather than all mn input points entering the system concurrently, they now stream

in and out at a rate of n words per cycle. This is defined as streaming reuse and represented as

Im ⊗
sr An. The streaming width indicates the number of inputs (or outputs) that enter (or exit) a

section of datapath during each cycle. Here, the streaming width is n.

The two interpretations of ⊗ can be nested in order to build a partially parallel datapath that is

reused over multiple cycles (Figure 3.1(c)). In general, Im⊗An can be written as Imn/w⊗
sr (Iw/n⊗

An), which results in a datapath with a streaming width of w, consisting of w/n parallel instances

of An, reused over mn/w cycles (w is a multiple of n; w ≤ mn). Increasing the streaming width

increases the datapath’s cost and throughput proportionally.

3.1.1 Streaming reuse of other formula constructs

Indexed tensor product. Streaming reuse can also be applied to the indexed tensor product

Im ⊗ℓ An
ℓ ,
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where A is an n×n matrix parameterized by ℓ. When this construct is streamed with width w = n,

one computational block is built that is capable of performing all An
ℓ , 0 ≤ ℓ < m. In the worst case,

this can lead to a roughly m× overhead in the hardware cost, if the m instances cannot share logic

between them. However, often this hardware block can be simplified. For example, the DCT-2

algorithm (2.23) presented in Chapter 2.3.4 contains the term

(I2k−1 ⊗ℓ M
(s,ℓ)
2 ),

where

M
(s,ℓ)
2 =






1 0

−µs(ℓ) 1




 , µs(ℓ) =







0, ℓ mod 2s = 0,

1, ℓ mod 2s 6= 0

.

When streaming reuse is applied to this formula, only two possible instances of M need to be

considered: one that is equivalent to I2, and one that performs one subtraction. In hardware, this can

be realized as one subtractor and one multiplexer, with a comparator controlling the multiplexing

logic.

Diagonal matrices. Diagonal matrices scale each data element by a constant. An n point

diagonal can easily be streamed with width w by building w multipliers, each holding its own

lookup table of n/w constants.

The simplest way to write this as a streaming reuse formula is to reformulate the expression into

one that uses I⊗ℓ. So, a diagonal Dn with streaming width w is

StreamDiag(Dn, w) =
(
In/w ⊗

sr
ℓ ((Iw ⊗k (Dn ◦ f(k))) ◦ g(ℓ))

)
, (3.1)

where

f(k) = ın/w ⊗ (k)w,

g(ℓ) = Ln
n/w ◦

(
(ℓ)n/w ⊗ ıw

)
,
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and ı, (ℓ)n, and ◦ are indexing functions as defined in [18]:

ın : In → In; i 7→ i,

(j)n : I1 → In; i 7→ j,

g ◦ f : Im → IN ; i 7→ g(f(i)),

In = {0, . . . , n− 1}.

First, the diagonal matrix is split into w partial lookup tables. Each holds the values that will

be multiplied by inputs from one of the w input ports. The rightmost term in the formula serves

to separate the n point diagonal into n/w segments of size w (each corresponding to one cycle

of streaming reuse). The values of these segments can then be computed and the results stored in

lookup tables.

This representation also allows easy simplification in the case of certain repeated patterns within

the diagonal matrix. For example, every other element of twiddle diagonal Tn
2 is equal to 1. So,

when this diagonal is streamed (with 2 power streaming width), half of the corresponding multipliers

will always multiply by 1. Using this representation makes this situation (and similar ones) easy to

recognize within the compiler, allowing automatic removal of the unneeded multiplier.

Permutation matrices. Implementing streaming reuse on permutation structures is a difficult

problem, but one that is crucially important. A permutation streaming with width w must take in

an n point input vector at a rate of w words per cycle. It must buffer the data stream, perform a

reordering over the entire n data points, and then stream the data vector out. Chapter 5 presents two

methods for constructing this type of system. This thesis uses a streaming permutation wrapper

StreamPerm(Pn, w)

as a way of representing this structure.
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An An

… 

m blocks

(a) No iterative reuse:
∏

m An.

An

1 block, reused 

m times

(b) Full iterative reuse:
∏ir

m An.

An An

… 

d blocks, reused 

m/d times

(c) Partial iterative reuse:
∏ir

m/d (
∏

d An).

Figure 3.2: Examples of iterative reuse.

3.2 Iterative Reuse

The product of m identical blocks An can be written as
∏

m An. A straightforward interpretation of

this is a series of m blocks cascaded (Figure 3.2(a)).

The same computation can be performed by reusing the An block m times (Figure 3.2(b)). Now,

the datapath must have a feedback mechanism to allow the data to cycle through the proper number

of times. This is called iterative reuse and is represented by adding the letters “ir” to the product

term:
∏ir

m An. By nesting both kinds of product terms, the formula specifies a number of cascaded

blocks to be reused a number of times (Figure 3.2(c)). In general,
∏

m An can be restructured into

∏ir
m/d(

∏

d An), resulting in d cascaded instances of An, iterated over m/d times (where m/d is an

integer). The term depth is used to indicate the number of stages built (here, d).

When an iterative reuse datapath is built, it is important that the reused portion of the datapath

buffer the entire vector, so the “head” of the data vector does not feed back too soon and collide with

its own “tail.” This is equivalent to requiring that the latency (in cycles) be at least 1/(its throughput

in transforms per cycle). If the datapath does not naturally have this property, it is necessary to add

buffers to increase its latency.
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3.2.1 Iterative Reuse of Other Formula Constructs

Dependence on iteration variable. Iterative reuse can also be applied to the iterative product

m−1∏

ℓ=0

An
ℓ ,

where the n×n matrix A is parameterized by iteration variable ℓ. If this formula is iteratively reused

with depth d = 1, then one computational structure capable of performing all of the variants of A
(ℓ)
n

(where 0 ≤ ℓ < m) is constructed. In the worst case, m different independent blocks must be

built, but often, the structure of the algorithm allows these blocks to be simplified by sharing logic

or arithmetic units (for example, the basic block in algorithm (2.21)). This situation is analogous to

streaming reuse of the indexed tensor product in Section 3.1.1.

Diagonal matrices. Diagonal matrices are often used in product terms with a dependence on

the iteration variable:
m−1∏

ℓ=0

Dn
ℓ .

This formula can be iteratively reused by storing all mn constants, and adding simple logic to

choose from the correct n depending on the value of ℓ. This also works in the streaming case, where

it can be written as StreamDiag(Dn
ℓ , w).

An example of this type of formula construct can be found in the Pease FFT (2.13).

Permutation matrices. Similar to diagonal matrices, iterative reuse can also be applied to per-

mutations. If streaming reuse is not used, then this simply is an instance of the generic dependence

on iteration variable discussed above. When both streaming and iterative reuse are used, the formula

becomes
m−1∏

ℓ=0

StreamDiag(Pn
ℓ , w).

Chapter 5 describes how this permutation is implemented.

3.3 Formula-Based Hardware Model

Table 3.1 describes rules for deriving the latency, throughput, and an approximate area cost of four

basic formula constructs. Given a matrix formula F , the table provides formulas for latency L(F )
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Formula F Latency L(F ) Throughput T (F ) Area cost C(F )

Fn = A
(0)
n · A

(1)
n · · ·A

(m−1)
n

∑

i
(L(A

(i)
n )) min(T (A

(i)
n ))

∑

i
(C(A

(i)
n ))

Fn =
∏ir

k
An max( k

T (An)
, k · L(An)) min(T (An)

k
, 1

k·L(An)
) C(An) + C(mux)

Fmn = Im ⊗ An L(An) T (An) m · C(An)

Fmn = Im ⊗
sr An L(An) T (An)/m C(An)

Table 3.1: Given a matrix formula F , formulas for latency L(F ) (cycles), throughput T (F ) (trans-

forms per cycle) and approximate area cost C(F ) (relative to the area cost of sub-modules).

(cycles), throughput T (F ) (transforms per cycle) and approximate area cost C(F ) relative to the

latency, throughput, and area of F ’s submodules. The entries of this table can be recursively used to

reason about complex formulas. Section 3.4 will give an example for a common formula type that

can combine streaming reuse and iterative reuse.

3.4 Combining Streaming and Iterative Reuse

Often, transform algorithms contain the form
∏

k(Im⊗An). This structure can utilize both iterative

reuse (due to the
∏

) and streaming reuse (due to Im ⊗ An), allowing a wide range of hybrid

implementations that exhibit flexibility across two dimensions. One can restructure this formula to

have streaming and iterative reuse of parameterized amounts:

k/d−1
∏

ℓ0=0

ir





d−1∏

ℓ1=0

(Inm/w ⊗
sr (Iw/n ⊗An))



 ,

where d is the depth of the cascaded stages (ranging from 1 to k; k/d must be an integer). Parameter

w is the streaming width, a multiple of n.

This parameterized datapath is illustrated in Figure 3.3. Each stage consists of w/n parallel

instances of An; d stages are built in series. Let Bmn represent this array of dw/n many An blocks.

Data are loaded into the cascaded stages at a rate of w per cycle over mn/w cycles. The vector

feeds back and passes through the series of stages a total of k/d times.

Latency and throughput. Given this combined reuse example, one can use the structure of the

formula to analyze the effect of parameters d and w on the datapath. The following are calculations

that correspond to evaluating the general rules from Table 3.1 for the specific parameters of this
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Figure 3.3: Combining iterative and streaming reuse:
∏ir
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sr (Iw/n ⊗An))

)
.

combined reuse example (Figure 3.3). These calculations assume that Bmn (the collective block of

An blocks) is fully pipelined, i.e., its throughput is dictated by the problem size and streaming width

only: T (Bmn) = w/mn. The analysis of latency and throughput for this combined reuse example

includes the following two cases:

• Case 1: Iterative reuse. This case occurs when d < k, meaning the data will iterate over

the internal block at least 2 times. As discussed in Section 3.2, the internal block’s minimum

latency is determined by its throughput. So, if d·L(An) < mn/w, buffers are added until they

are equal. Thus, internal block Bmn has latency L(Bmn) = max(mn/w, d · L(An)). The

latency of the whole system is k/d times this, giving latency = max(mnk/dw, k · L(An)).

Because this datapath utilizes iterative reuse, a new vector cannot enter until the previous

vector begins exiting the datapath, so the throughput (in transforms per cycle) is the inverse

of the latency, min(dw/mnk, 1/(k · L(An))).

• Case 2: No iterative reuse. This case occurs when d = k. Now, no iterative reuse is

performed; the data only passes through the inner block once. The datapath consists of d = k

stages, giving latency = k · L(An). Because the data never feeds back, the throughput is

limited only by the streaming width, giving throughput = w/mn transforms per cycle.

These equations show that increasing w and d will lead to lower latency and higher throughput

in equal weights, until either the data flows so quickly that the latency of the computation dominates

(d · L(An) > mn/w), or d increases until no iterative reuse is performed (d = k).
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Flexibility. Additionally, there is one important distinction that must be made between pa-

rameters d and w: as w grows, the datapath requires greater bandwidth at its ports, and the cost

of interconnect and multiplexers increases. In the simple example considered here, a design with

w = 2, d = 16 will have roughly the same cost and performance as a design with w = 16, d = 2,

but the latter will require a bandwidth of 16 words during loading and unloading phases, while the

former only requires two words per cycle (over 8× more cycles). For this reason, it is preferable to

increase d instead of w. However, d must divide k evenly (k is typically the log2 of the transform

size). In many cases, this becomes an “all or nothing” situation, where the only options are d = 1

and d = k. In those cases, the added flexibility provided by w is important.

Lastly, when the datapath does not employ iterative reuse (i.e., when d = k), the designer

typically has a wider choice of algorithms because the internal stages are not required to be uniform.

Datapath efficiency and vector interleaving. Assume we have an iterative reuse datapath that

reuses block Bn. Here, Bn can represent any datapath, including those with further iterative reuse

internally. Bn has an inherent latency L(Bn) and throughput T (Bn) (determined by the inverse of

the minimum initiation interval of input vectors).

With a single vector recirculating through Bn, the effective throughput of Bn may be further

limited to 1/L(Bn) if L(Bn) is greater than the minimum initiation interval. In this case the head

of the vector is still inside Bn when Bn’s input is ready to accept a new iteration.

Let R be a utilization ratio of the effective throughput to the inherent throughput of Bn; this

quantifies the portion of Bn’s potential throughput that is utilized in the system. For a single vector,

R = (1/L(Bn))/T (Bn).

When the utilization by a single vector is sufficiently low, the system can interleave multiple

vectors to make use of the full throughput capacity of Bn. Formally, if R ≤ 1/V (where V is an

integer), the system may interleave V computations through the datapath, increasing the effective

throughput and thus increasing the utilization ratio to R′ = (V/L(Bn))/T (Bn).

In some cases, a designer may want to increase L(Bn) artificially for better efficiency. For

example, if R = 0.55, the designer could insert delay buffers in the datapath (increase L(Bn))

until R is reduced to 0.5 and then interleave two vectors. This increased utilization yields higher

throughput at the expense of added latency, so the designer’s particular application requirements

will determine the suitability of this approach.
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3.5 Summary

This chapter presented a formula-driven hardware paradigm that connects a set of sequential hard-

ware structures with a set of formula constructs. These sequential reuse techniques allow multiple

computations from an algorithm to be mapped to a single processing element in the datapath.

First, streaming reuse controls the width of the data vector and thus the parallelism of the sys-

tem. Using these techniques, streaming implementations require that the computation be decom-

posed into parallel sub-blocks. The formula Im ⊗An mathematically captures this requirement for

streaming width w, where w is an integer multiple of n and w < mn. This idea is extended when A

is allowed to vary with an index variable: Im ⊗ℓ An
ℓ . Now, since different A matrices are allowed,

any mn ×mn matrix that can be decomposed into parallel n × n subblocks can be streamed with

width w. The more similarity that exists among the different the An
ℓ blocks, the lower the implemen-

tation cost, because in that case the final hardware block can share computational elements between

the different iterations.

Similarly, iterative reuse (IR) controls the depth of the datapath, which is the number of cas-

caded stages from input to output. Designs with higher depth have more stages, while lower depths

correspond to fewer stages and thus more iterations of the data vector over the structure. This re-

peated stage structure is written as
∏

ℓ An
ℓ . Note that the n × n matrix A can depend on index ℓ.

Thus, any product of matrices can be iteratively reused, but if the An
ℓ matrices are not related, there

is no benefit from using IR. For example, if An
0 and An

1 are completely different and cannot share

logic, then there would be no benefit to using IR on
∏1

ℓ=0 An
ℓ , because the IR version would have

slightly greater area (due to the feedback path), the same or worse latency, and roughly half of the

throughput. In this way, the structure of a formula is deeply connected with whether or not iterative

reuse provides a benefit.

Thus, the type and amount of sequential reuse that is desired affects the amount of regularity

that is beneficial within an algorithm. For example, the Pease FFT algorithm (2.13) and the Iterative

FFT algorithm (2.15) are similar except the Pease algorithm has the same permutation in each of its

stages, while the Iterative algorithm does not. So, when the user requests a design with IR, the Pease

algorithm is more efficient than the Iterative algorithm. In this way, Spiral does not search to select

algorithms, but chooses based upon how well an algorithm’s structure fits within the paradigm the
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user has requested.



Chapter 4

Automatic Compilation from Formula to

Datapath

Previous chapters presented a mathematical language for describing linear transform algorithms

and how that formula space can be refined to allow explicit specification of sequential reuse. This

chapter describes how these concepts are used to drive an automatic compilation framework that

maps a transform to an algorithmic formula, transforms the formula to one that includes the desired

streaming and iterative reuse characteristics, and maps that hardware formula into a register-transfer

level (RTL) Verilog description.

Figure 4.1 shows a high-level view of each of the steps in this compilation process. First, a

transform enters the system, an algorithm is selected, and a formula representation of that algorithm

is produced. Then, formula rewriting is used to apply iterative reuse and streaming reuse to the

formula; the resulting “hardware formula” now has explicit sequential reuse. Lastly, the hardware

formula is then translated into a register-transfer level (RTL) Verilog description. Below, each of

these steps is explained.

4.1 Hardware Directives

This system uses hardware directives to include information about the desired features of the hard-

ware implementation to be produced by the compilation framework. Hardware directives are tags

placed around a formula or portion of a formula. This work utilizes two directives. First, the

36
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Figure 4.1: Block diagram of hardware compilation system.

streaming tag indicates streaming reuse:

An
︸︷︷︸

stream(w)

.

This indicates that the contents of A should be restructured such that the resulting hardware formula

will be implemented in a block that contains w input and output ports, with data streamed at w

elements per cycle, over n/w cycles.

Next, the depth tag indicates whether to employ iterative reuse (and of what depth):

An
︸︷︷︸

depth(d0,d1,... )

.

This tag indicates that the contents of An should be modified so that the top-most
∏

be restructured

to have iterative reuse with depth d0, its next nested
∏

with depth d1, and so on.

The tag

An
︸︷︷︸

stream(w), depth(d0,... )

represents both directives at once.
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4.2 Formula Generation: From Transform to Algorithm

The formula generation stage takes in a transform of a fixed size, applies one or more transform

algorithms, and outputs a formula that specifies the complete algorithm in the formula language

defined in Section 2.2.

This stage contains the system’s knowledge of transform algorithms, as detailed in Section 2.3.

For each algorithm, it consists of a set of conditions under which it is applicable and the parame-

terized formula to output. Choices made at this stage are guided by the aforementioned hardware

directives, which can dictate which algorithms are appropriate depending on the parameters chosen.

Other algorithmic guidance such as desired radix can also be specified by the user at this time.

Chapter 6 discusses transform algorithms in the context of streaming and iterative reuse, and

explains which algorithms are used in which reuse scenarios. This portion of the compilation frame-

work is implemented inside of Spiral [4].

Example. For example, if the desired transform is a 128 point DFT with radix 2, width 4 and

depth 1,

DFT128
︸ ︷︷ ︸

stream(4), depth(1)

,

the Pease FFT algorithm (2.13) will be utilized, producing

(
6∏

ℓ=0

L128
2 · (I64 ⊗DFT2) · C

128
ℓ

)

·R128
2

︸ ︷︷ ︸

stream(4), depth(1)

.

Or, the user could specify depth 7, producing

DFT128
︸ ︷︷ ︸

stream(4), depth(7)

→ L128
2

(
t−1∏

ℓ=0

(I64 ⊗DFT2)
(

I2ℓ ⊗
(

E27−ℓ

ℓ ·Q27−ℓ

ℓ

))
)

R128
2

︸ ︷︷ ︸

stream(4), depth(7)

,

which utilizes the Iterative FFT algorithm (2.15) with radix 2. Lastly, the user could specify radix

4 and depth 3 and the system would first use the Mixed-Radix algorithm (2.16) to decompose the

DFT128 into DFT64 and DFT2. Then it would use the Iterative algorithm (2.15) to implement
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DFT64, producing

DFT128
︸ ︷︷ ︸

stream(4), depth(3)

→ L128
64 (I2 ⊗DFT64)L

128
2 T 128

2 (I64 ⊗DFT2)L
128
64

︸ ︷︷ ︸

stream(4), depth(3)

,

where DFT64 is decomposed:

DFT64 → L64
4

(
2∏

ℓ=0

(I16 ⊗DFT4)
(

I4ℓ ⊗
(

E43−ℓ

ℓ ·Q43−ℓ

ℓ

))
)

R64
4 ,

and DFT4 is further decomposed using (2.12).

4.3 Formula Rewriting: Algorithm to Hardware Formula

Next, the algorithmic formula enters the formula rewriting stage, which takes the formula plus

hardware directives and produces a hardware formula, which is a restructured and annotated version

of the algorithm that includes specification of sequential reuse as discussed in Chapter 3. Thus, the

output of this stage corresponds directly to sequential hardware implementation.

The compilation framework accomplishes this restructuring using a rewriting system that takes

in a tagged formula, and using a set of rewriting rules, attempts to restructure the formula or propa-

gate the tag downward. The end result of this stage is a formula with no remaining tags.

In addition to implementing streaming and iterative reuse, rewriting rules within this section

of the compiler perform simplifications and optimizations to improve the quality of the generated

design.

4.3.1 Rewriting for Streaming Reuse

First, Table 4.1 lists the rewriting rules that the system utilizes for streaming reuse. Each rule takes

a formula construct with the stream tag, and either rewrites the formula to implement streaming or

pushes the tag inward to be processed at the next level. Each of the rules has a simple explanation:

• base-SR: If the size of a matrix is the same as the desired streaming width, the stream tag is

not necessary and can be dropped.
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name rule condition

base-SR An
︸︷︷︸

stream(n)

→ An

product-SR An ·Bn · · ·Zn
︸ ︷︷ ︸

stream(w)

→ An
︸︷︷︸

stream(w)

· Bn
︸︷︷︸

stream(w)

· · · Zn
︸︷︷︸

stream(w)

stream-IR
∏ir

An

︸ ︷︷ ︸

stream(w)

→
∏ir

An
︸︷︷︸

stream(w)

stream1 Im ⊗Ak
︸ ︷︷ ︸

stream(w)

→ Imk/w ⊗
sr
(
Iw/k ⊗Ak

)
mk > w and k ≤ w

stream1-dep Im ⊗ℓ Ak
ℓ

︸ ︷︷ ︸

stream(w)

→ Imk/w ⊗
sr
ℓ0

(

Iw/k ⊗ℓ1 Ak
ℓ0·w/k+ℓ1

)

mk > w and k ≤ w

stream2 Im ⊗Ak
︸ ︷︷ ︸

stream(w)

→ Im ⊗
sr Ak
︸︷︷︸

stream(w)

k > w

stream2-dep Im ⊗ℓ Ak
︸ ︷︷ ︸

stream(w)

→ Im ⊗
sr
ℓ Ak

ℓ
︸︷︷︸

stream(w)

k > w

stream-diag Dn
︸︷︷︸

stream(w)

→ StreamDiag(Dn, w) w | n

stream-perm Pn
︸︷︷︸

stream(w)

→ StreamPerm(Pn, w) w | n

Table 4.1: Rewriting rules for streaming reuse.
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• product-SR: If a product of matrices is tagged for streaming, the stream tag is propagated to

each individual matrix.

• stream-IR: Similarly, a stream tag is propagated into the inner term of an iterative reuse

product.

• stream1 and stream1-dep: If the size of A is less than or equal to the size of the stream,

the rule attempts to unroll the inner tensor product to match the stream size. If A depends on

index variable ℓ, the same rewriting is performed except the dependence must now change to

include two index variables ℓ0 and ℓ1.

• stream2 and stream2-dep: If the size of A is larger than the size of the stream, the tag is

propagated inward, and another rule must restructure A to the right streaming width.

• stream-diag: A diagonal to be streamed is rewritten into the streaming diagonal form (3.1)

as described in Chapter 3.2.1.

• stream-perm: A permutation to be streamed is placed in a streaming permutation wrapper,

and will be implemented in hardware as discussed in Chapter 5.

4.3.2 Rewriting for Iterative Reuse

Next, Table 4.2 shows the rules used for iterative reuse:

• base-IR: If the formula tagged with a depth tag does not contain any product terms, the depth

tag is unneeded.

• drop-tag-IR: When the depth tag does not have any terms left in its list, it is dropped because

it no longer holds any directives.

• product-IR and product-IR-dep: When a product term with a depth tag is encountered,

iterative reuse is applied, with an inner product of appropriate depth (here, d0). The first term

(d0) is then removed from the tag, and the tag is propagated inward. Similarly, if the inner

formula of a product term has a dependence on the iteration variable, the same process occurs,

except the iteration dependence must combine the two product variables ℓ and k.
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name rule condition

base-IR An
︸︷︷︸

depth(d0,... )

→ An Ak contains no
∏

drop-tag-IR An
︸︷︷︸

depth()

→ An depth tag empty

product-IR

m−1∏

ℓ=0

An

︸ ︷︷ ︸

depth(d0,d1,... )

→

(m/d0)−1
∏

ℓ=0

ir






d0∏

k=0

An
︸︷︷︸

depth(d1,... )




 m/d0 integer

product-IR-dep

m−1∏

ℓ=0

An
ℓ

︸ ︷︷ ︸

depth(d0,d1,... )

→

(m/d0)−1
∏

ℓ=0

ir






d0∏

k=0

An
ℓ·d0+k
︸ ︷︷ ︸

depth(d1,... )




 m/d0 integer

product-noIR
(∏

An

)

→ An ·An · · ·An

product-noIR-dep

(
m−1∏

ℓ=0

An
ℓ

)

→ An
0 ·A

n
1 · · ·A

n
m−1

Table 4.2: Rewriting rules for iterative reuse.
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• product-noIR and product-noIR-dep: When a product term is encountered without a depth

tag, the product is unrolled. Similarly, if the product term has no depth tag but the inner

formula depends on ℓ, the ℓ variable is replaced with constants 0, 1, . . . as the product term is

unrolled.

Other specialized rules are not needed for the case where streaming permutations or streaming

diagonals are iteratively reused and dependent on the iteration index. In the case of permutations,

the formula can be directly implemented as described in Chapter 3.2.1 and Chapter 5.

Like the formula generation stage, this portion of the compilation framework is also imple-

mented inside of Spiral.

4.4 RTL Generation: Hardware Formula to RTL Verilog

After rewriting, the resulting hardware formula is expressed in Hardware SPL, an extended version

of the language presented in Section 2.2. In addition to the terms allowed in the original language,

this hardware language allows tensor products to have explicit streaming reuse, and allows product

terms to have iterative reuse. In addition to diagonal matrices Dn and permutation matrices Pn, the

language also allows their streaming variants StreamDiag(Dn, w) and StreamPerm(Pn, w).

The RTL generation stage takes in such a hardware formula and produces a synthesizable

register-transfer level (RTL) Verilog description of the corresponding datapath. This portion of

the compilation framework is partially implemented inside of Spiral and partially implemented as a

standalone backend that runs alongside of Spiral.

4.4.1 Compilation Overview

There are several classes of formula constructs to consider in the RTL generation stage. This section

briefly discusses each and indicates which language elements of the hardware SPL language are in

each class.

Combinational Formula. Any portion of the formula without iterative reuse (
∏ir

), streaming

reuse (I⊗srA) or explicit sequential meaning (streaming permutations) can automatically be mapped

into a combinational datapath, as discussed in Section 2.2. So, this class of formulas contains:

computational basic blocks (An), unstreamed diagonals and permutations (Dn and Pn), matrix
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products without iterative reuse (An · Bn . . . ), and tensor products without streaming reuse (Im ⊗

An). Additionally, note that the inner term of a streaming diagonal StreamDiag(Dn, w) is simply

a computational basic block (see Chapter 3.1.1), so its inner term fits within this set as well (while

its outer term will fall under streaming reuse, below).

When the compiler encounters this type of formula, it constructs a hardware datapath and auto-

matically pipelines the path by inserting staging registers. Additional buffers are added if needed to

guarantee that corresponding data words reach the output ports together in the same cycle.

A variation on this class of formula is a basic block with dependence on an index variable, which

is set by a (I ⊗ℓ . . . ) or
∏

ℓ formula. In this case, the compiler determines the possible values for

ℓ, and constructs hardware to calculate the result for each. The compiler attempts to simplify the

datapaths as much as possible by reducing the dependency on ℓ to the smallest segments possible.

Streaming Reuse. A streaming reuse tensor product Im ⊗
sr An is implemented in hardware

as one An block, with the input streamed at a rate of n words per cycle over m cycles (as seen in

Figure 3.1(b)). When implementing the indexed tensor product Im ⊗
sr
ℓ An

f(ℓ), a hardware counter is

constructed, and index variable ℓ is passed to the subblock.

Streaming Diagonal. A diagonal matrix scales each element in the input vector by the corre-

sponding value from the diagonal of the matrix. As shown in Section 3.1.1, a streamed diagonal is

represented as an indexed tensor product. The hardware implementation uses w multipliers, where

w is the streaming width. Then, the n values from the diagonal are stored in w lookup tables, which

feed the multipliers with the appropriate data at each cycle. In some structured diagonals (for ex-

ample, one where every other diagonal entry is 1), the system can automatically reduce the cost by

simplifying away some of the w multipliers.

Streaming Permutation. A permutation with a streaming width w must perform an n point

permutation while data streams in and out of the system at a rate of w words per cycle. In Chap-

ter 5, this problem is discussed further and two techniques [19, 20] to construct such systems are

explained.

Iterative Reuse. As shown in Fig. 3.2(c), an iterative reuse structure
∏k−1

ℓ=0

ir
Am is built with an

input multiplexer and feedback loop. In addition, it is necessary to ensure that the latency through

the iteratively reused block Am is sufficient to prevent the vector’s “head” from colliding with its

own “tail” at the input multiplexer (see Chapter 3.2). So, the compiler must determine the latency
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(in cycles) through Am and (if necessary) add additional buffering.

In the simplest case, Am does not depend on the iteration index ℓ, and the only additional

hardware required are the feedback path, multiplexer, and multiplexing control logic. However, the

compilation framework allows some matrix formulas to be iteratively reused with a dependence

on the iteration index. For example, iterative reuse can be used on diagonal matrices, with the

diagonal’s values changing with the iteration. This is expressed as:

k−1∏

ℓ=0

ir
Dℓ

n.

In each iteration, the diagonal matrix will scale the n elements of the input vector by n constants,

which vary with ℓ. So, when this matrix is iteratively reused, the datapath will still contain the logic

needed to scale the data vector, but it must now also contain lookup tables that hold all ℓ ·n constant

values.

Other elements that may be depend on the iteration in an iterative reuse structure in this manner

include streaming permutations (described in Chapter 5) and basic blocks.

Other Functionality of the RTL Generation Stage. In addition to translating the hardware

formula into an RTL description, the RTL generation stage includes added functionality. For ex-

ample, latency and throughput (relative to the cycle time) are computed for all blocks, and can be

reported at the top level or any level below. Other options include basic cost reporting (e.g., count-

ing the numbers and size of RAMs, ROMs, and arithmetic units). In previous work [21], an FPGA

area model was created and calibrated for a subset of the design space considered here. Such an

approach may be able to be extended to produce an accurate FPGA area model for the full design

space. Lastly, the generator is also able to include basic Verilog testbenches for any design it gener-

ates. With one command, it is possible to go from transform to formula to RTL, and run a Verilog

simulation.

4.4.2 Compilation Stages

The RTL generation stage is implemented as a standalone tool that takes input from Spiral and

produces register-transfer level Verilog. The following are the stages undertaken as it translates

from a Hardware SPL formula to a hardware implementation.
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1. Basic block compilation: Spiral takes all computational basic blocks (dense matrices) and

converts each into a directed acyclic graph that represents the computation of the basic block.

2. Backend input: The backend RTL generator reads the formula and basic block code pro-

duced by Spiral, and creates an intermediate data structure that contains objects for each class

of formula element (e.g.
∏ir

, StreamPerm, I⊗sr, etc.).

3. Pipelining: The compiler next adds pipelining stages to all basic blocks and checks that the

block’s output elements are synchronized correctly. If they are not, the system adds buffers

where necessary.

4. Module sizes: This stage determines the input/output sizes (number of data points) for each

module. Then, it checks these values against the sizes inferred from the original formula for

consistency.

5. Iteration variable: This compilation stage resolves all iteration variables (e.g., indices from

∏

ℓ A or I ⊗ℓ A), analyzes them, and propagates them to their appropriate submodules.

6. Variable ranges: This stage attempts to determine the minimum and maximum values of

each variable in the design’s basic blocks. Often, variables that are computed from iteration

counters or computed values from lookup tables can be bound. In particular, this information

will become useful in simplifying conditional statements and pruning unnecessary computa-

tion.

7. Data type: Next, the compiler determines the data type of all variables, including the number

of bits of precision for fixed point types. This information can be inferred based upon the input

data type and the computations that are performed. Furthermore, the compiler implements

scaling at this stage, if the user has requested a scaled fixed point implementation.

8. Lookup tables: This stage analyzes the constant lookup tables that are used when imple-

menting streaming diagonal matrices. The compiler examines the tables, removing trivial,

unused, or redundant ones, and updating references to them appropriately.

9. Cleanup: Next, the compiler performs a simplification and cleanup step. This stage merges

identical arithmetic operations, removes trivial ones, and performs other simplifications. For
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example, code implementing the following equations:

t0 = a0 + b0

t1 = a0 + b0

t2 = a1 × 1

t3 = a2 × 0

t4 = t3 + t1

would be simplified to:

t0 = a0 + b0

t2 = a1

t4 = t0.

10. Latency and buffering: This stage uses formulas like those seen in Section 3.3 to determine

the latency of each module in the design. As explained in Section 3.2, modules that are it-

eratively reused have a minimum latency requirement to keep the head of the vector from

colliding with its tail. Once latency is determined, the compiler checks to see if this require-

ment is met; if it is not, the compiler adds buffers to the datapath. (If a streaming permutation

is used within the IR block, some or all of the buffering can be inserted into the streaming

permutation at no added cost.)

11. Throughput: Next, this stage finds the throughput of each module, in order to determine the

overall throughput of the system, which becomes part of the input/output specification for the

end user. The compiler calculates throughput using formulas like those seen in Section 3.3.

12. BRAM allocation (optional): If the user is targeting an FPGA, he or she may request that

block RAMs be used and present the compiler with a budget. In this situation, the com-

piler will examine all of the memory structures needed within the design and choose the best

allocation of the allowed number of BRAMs.
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13. Resource estimation (optional): If requested by the user, the compiler can perform coarse-

grained resource estimation, determining the number, data type, and precision of adders, mul-

tipliers, RAMs and ROMs.

14. Testbench generation (optional): Based on the design’s data type, latency, and throughput,

the compiler can generate a Verilog testbench suitable for simulation. The testbench outputs

data in a format that can be read by Spiral in order to verify the correctness and quantify the

error.

15. Output: Lastly, the compiler outputs a synthesizable register transfer level Verilog imple-

mentation.



Chapter 5

Permuting Streaming Data

Permutations are crucially important portions of linear transform algorithms, but they are difficult

to perform in hardware structures that operate on streaming data, such as those described in Sec-

tion 3.1. Prior work addresses this problem in a limited way for a subset of permutations and a

subset of problem sizes. This chapter explores the problem of streaming permutations, explains the

prior work, and introduces a new general technique that can implement any fixed permutation of

any size.

5.1 Problem

A permutation is a fixed reordering of a given number of data elements. Pn represents a permu-

tation of an n point data vector. Figure 5.1(a) shows an example of a 12 point permutation P12.

Data elements (0, . . . , 11) enter concurrently from the left, are reordered, and exit in permuted or-

der. A hardware implementation of such a permutation is trivial if all n data points are available

concurrently: it is simply built as a reordering of wires.

However, when a permutation must be performed on streaming data, the implementation is

more difficult. Figures 5.1(b) and (c) illustrate a streaming version of the permutation seen in

Figure 5.1(a). Here, n = 12 data words, and the streaming width is w = 3 data words per cycle.

In Figure 5.1(b) the data labeled (0, 1, 2) enter the system on the first cycle, (3, 4, 5) enter on the

second, and so on, for a total of n/w = 4 cycles. Figure 5.1(c) shows the structure’s output, where

the 12 words flow out of the system in their new permuted order (5, 2, 3, 0, . . . ), again with w = 3

49
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Figure 5.1: Examples: permutation and streaming permutation.

words per cycle.

Performing a permutation on streaming data is difficult because data must be reordered across

time boundaries by storing and retrieving from a memory. For example, the element labeled 1 in

Figure 5.1(b) streams into the system during the first cycle of the input stream, but must be buffered

until the third cycle of the output stream (in Figure 5.1(c)).

A method for implementing streaming permutations must be able to scale as w (the number of

data words per cycle) increases. Thus, using one large w-ported memory is infeasible; instead, a

solution must use multiple memories and partition the problem across them.

5.2 Existing Approaches

Stride Permutations. Most of the existing work in the literature on streaming permutations focuses

on the stride permutation L. For example, [22] generates hardware implementations of L2n

2s with

streaming width 2k using a number of small FIFO memories with interconnection networks. Al-

though this technique uses the minimal storages for a given permutation, its usage of multiple small

independent memories leads to high overhead and complex control. In another example, [23] is

able to perform L2n

2s with streaming width 2k where k ≥ n− s using memories and interconnection

networks. Other similar techniques include [24].
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Figure 5.2: Block diagram of streaming permutation structure (n points, w words per cycle) built

using the bit matrix method.

Data Format Converters. Parhi [25] introduces a technique to design a register-based data

format converter that can be used to implement a streaming permutation. This method uses a register

allocation algorithm to design a datapath consisting of individually-controlled registers connected

with wires and switches. This technique is general; it can be used on any streaming permutation.

However, its need to provide control logic to all of the individual registers and connection networks

leads to considerable overhead.

Bit Matrix Method. In [20], Püschel, Milder and Hoe present a method for generating stream-

ing permutation circuits for a subset of all permutations and streaming widths. Figure 5.2 shows

a high-level view of the designs produced using this technique, which are comprised of two con-

nection networks and an array of RAMs. All storage is consolidated within w parallel RAMs, each

which must hold 2n/w data words. This method does not require pre-computed control values—

instead, all control is computed online with inexpensive bit operations. Additionally, the connection

networks used by this technique are optimized for the given permutation.

The method in [20] works by representing permutations as bit matrices—linear mappings on

the bit-level representation of data input and output locations. The permutation’s bit matrix is then

decomposed in a way that fully specifies the datapath and control logic for a given permutation.
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Further, the method optimizes the required connection networks and control logic; provable lower

bounds are reached for an important subset of problems.

However, this technique does not apply to all permutations: only a subset can be represented as

bit matrices, and the technique requires the problem size n and streaming width w to be powers of

two.

5.3 General Streaming Permutations

This section presents a parameterized datapath and accompanying mapping technique that is able

to be configured to perform any fixed streaming permutation. Similar to [20], this technique uses

parallel memories and switching networks; it is scalable with the problem size and the streaming

width. Unlike [20], this technique applies to all streaming permutations and does not force the

problem size or streaming width to be a power of two. This work was first presented in [19].

5.3.1 Parameterized Datapath

A key aspect of this work is the identification of a scalable datapath structure that can be configured

to perform any fixed streaming permutation with any streaming width. This section presents this

parameterized datapath and discusses its operation.

Figure 5.3 shows the datapath considered. It consists of two memory arrays M0 and M1, a

connection network N, and lookup tables (ROMs) that contain address and control data (R, T, and

W ).

Each memory array contains w parallel memories, each with capacity 2n/w. Each has one read

port and one write port.1 Memory arrays M0 and M1 are connected to lookup tables R and W

(respectively), which hold pre-computed address values.

N represents a connection network that is capable of taking w data points as input and outputting

them in any given order, with ROM T storing its pre-computed control data. When w is a power of

two, this network can be built as explained in [26, 27]. The resulting network utilizes w log2(w)−

w + 1 2-by-2 switches, which is asymptotically optimal. If w is not a power of two, N could

1It is also possible to replace the 2n/w word dual ported memory with two single ported memories of size n/w.
Then, data is written into one memory while it is read out of the other. This optimization may be beneficial on an ASIC,

where the designer can build precisely the necessary memory structures. However, this transformation is not beneficial

on most current FPGAs, which typically have embedded dual-ported memories.
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Figure 5.3: Block diagram of streaming permutation structure (n points, w words per cycle) built

using the general permutation method.

be constructed in several ways; the simplest is to build the network for the next largest power of

two. However, any other appropriate interconnection network or crossbar may be substituted. This

decision does not affect the other portions of the datapath (M0, M1, R, and W ).

As data flows through this structure, it passes through five stages:

1. Write into M0. Data flows into the system and is written in order to the banks of M0.

Element i is written into address ⌊i/w⌋ in bank i (mod w). Address values are generated with a

⌈log2(n/w)⌉ bit counter.

2. Read from M0. On each cycle of this phase, one word is read from each of the w memory

banks of M0. The read addresses (⌈log2(n/w)⌉ bits each) are pre-computed and stored in lookup

table R. Each line of R holds the w memory read addresses for a given cycle. Thus, R contains

n/w lines, and each line requires w · ⌈log2(n/w)⌉ bits.

3. Connection network. The connection network N takes in w elements and outputs them in

a permuted order. The design tool must pre-compute the values that will control the network, and

store them in T , which contains n/w configurations, with w′ log2 w′−w′ +1 bits per configuration

(where w′ = 2⌈log2 w⌉).

4. Write to M1. On each cycle of this phase, one word is written into each of the w memory

banks of M1. The write addresses are pre-computed and stored in lookup table W, each line of
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which holds w write addresses. So, W contains n/w lines, each of width w · ⌈log2(n/w)⌉ bits.

5. Read from M1. Data are read from M1 in order and flow out of the system. Element i is

read from address ⌊i/w⌋ of bank i (mod w). Address values are generated with a ⌈log2(n/w)⌉ bit

counter.

In order to maintain full throughput across multiple problems, M0 and M1 are each sized to

hold a total of 2n words. Then, n words can be written into addresses (0, . . . , n/w − 1) of each

bank while the previous n words are being read from addresses (n/w, . . . , 2n/w − 1). The design

accomplishes this by using a one bit register to determine whether or not to add an offset to the

addresses flowing into the RAMs. Every n/w cycles, this bit is complemented.

The effect of this is that up to three n point data vectors can be active in the structure at one

time. One set of n data points can be flowing into M0 (step 1), while a second set flows between

M0 and M1 (steps 2–4), while a third set of n points flows out of M1.

An important aspect to understand about this datapath is that all of the reordering is done in

stages 2–4. Stage 1 writes data to M0 in natural order, and Stage 5 reads data from M1 assuming

it is already in permuted order. The problem then becomes: given a permutation Pn, how does one

guarantee that, on each cycle, one can read w words from M0 and write them to the correct locations

of M1 without conflicts (i.e., needing to read/write multiple words from/to the same RAM at the

same time)? A solution to this problem implies a datapath configuration that will be capable of

performing Pn with full throughput (w words per cycle) without stalling. Section 5.3.2 formalizes

this problem and derives a solution.

Extension to support multiple permutations. This method can also be used if multiple per-

mutations are to be performed by one iterative reuse structure. For example, the formula

k−1∏

ℓ=0

ir
P ℓ

n
︸︷︷︸

stream(w)

,

performs a different permutation in each of the k iterations. So, this can be implemented by increas-

ing the size of the pre-computed ROMs by a factor of k, and adding an extra input for the iteration

variable ℓ to determine which of the k configuration sets to use.

Tensor product of permutations. Often, algorithms permute n points by performing a smaller

k point permutation over n/k consecutive regions of the vector (k < n, and k and n/k are integers).



55 Chapter 5. Permuting Streaming Data

As a formula, this is written In/k ⊗ Pn. When streamed with width w where w < k, this becomes

In/k ⊗ Pk
︸ ︷︷ ︸

stream(w)

→ In/k ⊗
sr Pk
︸︷︷︸

stream(w)

→ In/k ⊗
sr StreamPerm(Pk, w)

Although this is still a permutation on n total points, the implementation cost is equal to a k point

streaming permutation.

These structures occur frequently in transform algorithms. For example, each stage (parameter-

ized by ℓ) of the Iterative FFT (2.15) has permutation:

Irℓ ⊗ Prt−ℓ

In iteration ℓ, this performs rℓ permutations on rt−ℓ points. Thus, when this formula is streamed,

the stages corresponding to larger values of ℓ are less expensive to implement.

5.3.2 Problem Formulation

This section formulates a mathematical problem that corresponds to mapping a streaming permuta-

tion to the datapath presented in Section 5.3.1. Further, it demonstrates that this problem is solvable

for all permutations and streaming widths.

As discussed in the previous section, the ordering of the data inside both memory arrays is fixed:

in M0, it must be in natural order and in M1, it must be in permuted order. The key problem then is

to choose w words each cycle that are read from the w different ports of M0 that must be written to

the w different ports of M1. Formally, the problem is defined as follows:

Problem 1. Given are a permutation Pn on I = {0, . . . , n− 1} and a streaming width w. For each

of the n/w time steps j, j = 0, . . . , n/w − 1, find a subset Sj ⊂ I containing precisely w points

such that

1. the union of all Sj is I (which implies that the Sj are pairwise disjoint); and

2. for every Sj and every k, ℓ ∈ Sj where k 6= ℓ:

k 6= ℓ (mod w) and Pn(k) 6= Pn(ℓ) (mod w).

A solution to Problem 1 will allow us to read (in cycle j) w elements (specified by Sj) from M0
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and write them to M1. By construction, the w words will be read from w distinct memory banks

in M0 and written to w distinct memory banks in M1. Since there are no conflicts at the read/write

ports, the system can sustain a full throughput of w words per cycle as desired. Thus, a solution to

this problem implies values for R, W , and T that will allow the datapath in Figure 5.3 to perform

Pn.

Next, we transform Problem 1 into a form that enables its solution. We start by defining a

mapping πw that collects the set of connections needed between the output of M0 and the input of

M1 in a matrix.

Definition 2. The mapping πw takes as input an n×n permutation matrix Pn and outputs a w×w

matrix of integers. If πw(Pn) = [ck,ℓ | k, ℓ = 0, . . . , w − 1], then

ck,ℓ = |{x ∈ I | x(mod w) = ℓ and Pn(x)(mod w) = k}|.

In words, the (k, ℓ) element of πw(Pn) gives the number of data words to be read from port ℓ of

M0 and written to port k of M1.

For example, consider the permutation

P12 = (0, . . . , 11)→ (3, 7, 1, 2, 6, 0, 11, 9, 4, 10, 8, 5). (5.1)

This permutation corresponds to the example seen in Figure 5.1. If w = 3 ports, then

π3(P12) =









1 2 1

1 1 2

2 1 1









. (5.2)

Lemma 3. The sum of all elements in a given row or column of πw(Pn) is n/w. A matrix with this

property is called a semi-magic square.

Proof. This follows from Definition 2 and the assumption that one word streams into each input

(and out of each output) on each of n/w cycles.

Lemma 4. πw(Pn) can be decomposed into a sum of n/w many w×w permutation matrices, some
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of which may be repeated.

Proof. This follows from [28], which proves that any semi-magic square can be decomposed into a

sum of permutation matrices. The total number must be n/w due to Lemma 3.

We represent this decomposition as

πw(Pn) = β0Q0 + β1Q1 + · · ·+ βk−1Qk−1, (5.3)

where the Qi are permutation matrices and the βi are integer constants ≥ 1 with
∑

i βi = n/w.

Each of the Qi permutations represents a particular configuration of the switching network N

in Figure 5.3. So, one can choose w corresponding words from M0 (one from each bank), permute

them by Qi, and write them into the correct locations of M1 (one word to each bank). Thus, the

decomposition in (5.3) represents a solution to Problem 1.

Continuing the example from (5.1) and (5.2), we can decompose πw(P12) as

πw(P12) =









1 0 0

0 1 0

0 0 1









+ 2









0 1 0

0 0 1

1 0 0









+









0 0 1

1 0 0

0 1 0









.

Lemma 5. πw(Pn) has a decomposition (5.3) that satisfies

k ≤ min(w2 − 2w + 2, n/w).

Proof. [29] gives an upper bound of w2 − 2w + 2 permutations. We can further tighten this bound

to min(w2 − 2w + 2, n/w), since Lemma 4 shows that there are at most n/w permutations.

Lemma 5 shows that even though there are w! many w × w permutation matrices, a much

smaller number is needed in (5.3). For the proposed datapath (Figure 5.3) this could lead to a

reduced storage requirement for T since some of the k settings may be used multiple times (if

k < n/w). Taking advantage of this would require storing the values of βi and adding additional

logic to determine when to increment T ’s address value. This optimization would reduce the number

of elements in T from n/w to k, and hence may reduce the overall hardware cost for some problems
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(if the savings from storing fewer words offsets the added cost of storing the βi and the added logic).

This optimization is not explored here.

5.3.3 Algorithm

Based upon the problem specified in Section 5.3.2, we formulate an algorithm that calculates the

parameters needed to perform a given permutation Pn with a streaming width w on the datapath in

Figure 5.3. This algorithm is executed at design time; it determines the control values to be stored

into ROMs R, T , and W .

This algorithm computes a decomposition of πw(Pn) of the form (5.3) and calculates the corre-

sponding values to store in R, T, and W. Recall, R and W denote the collection of addresses for M0

and M1, respectively. L = (Q0, . . . , Qn/w−1) represents the list of permutations that the connection

network must perform, and T represents the configuration bits associated with each permutation in

L (computed using the methods in [26, 27]).

Algorithm 6. Input: Pn and w. Output: R, T, and W.

1. C ← πw(Pn); (as described in Definition 2).

2. while (C contains non-zero entries) do

• find a permutation Q included in C;

• while C −Q contains no negative entries do

– C ← C −Q;

– append permutation Q to L;

– find (x0, . . . , xw−1) s.t. (xi(mod w) = i) and (Pn(xi)(mod w) = Q(i));

– append (⌊xi/w⌋), 0 ≤ i < w to R;

– append (⌊Pn(xQ−1(i))/w⌋), 0 ≤ i < w to W ;

3. calculate T based on the permutations stored in L, using the techniques in [26, 27];

4. output R, T, and W ;

The most computationally difficult part of Algorithm 6 is finding a permutation Qw that may

be subtracted from Cw. This can be accomplished in three ways: using a brute force algorithm,

mapping the problem to a satisfiability problem, or using an algorithm based on systems of distinct
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name type ports # needed # words bits per word

M0 RAM 2 w 2n/w b
M1 RAM 2 w 2n/w b
R ROM 1 1 n w · ⌈log2(n/w)⌉
W ROM 1 1 n w · ⌈log2(n/w)⌉
T ROM 1 1 n/w w′ log2 w′ − w′ + 1

Table 5.1: Summary of memories required for streaming permutation structures.

representatives (e.g., [30, Ch. 5]). This implementation uses the satisfiability approach; it is able to

solve practical problem sizes quickly. For the largest problem in this evaluation (n = 4096, w =

64), Algorithm 6 completes in approximately 6 minutes.

5.4 Evaluation

This section discusses the implementation of the proposed general streaming permutation method

and evaluates them by comparing with the results of [20]. A tool based upon the techniques dis-

cussed in this section is implemented as an automated generation tool (built as a module within the

main compiler described in Chapter 4). This tool takes as input a permutation Pn and a streaming

width w, and outputs a register-transfer level Verilog description of the design. The tool generates

an instance of the parameterized datapath, and uses Algorithm 6 to determine the values to store in

the lookup tables. Additionally, the bit-permutation-based technique from [20] is also implemented

as another module within the compilation tool.

Analysis of Generated Designs. Table 5.1 summarizes the number and size of memories

needed by the proposed solution. Additionally, the datapath requires w′ log2 w′ − w′ + 1 two-

input switches, where w′ = 2⌈log2 w⌉. In general, the cost of this implementation depends only on n

(the number of points in the data vector) and w (the streaming width of the system).2

Designs produced using this method have a throughput of w words per cycle, and a latency of

2n/w + ⌈log2(w)⌉+ 3 cycles.

Experimental Evaluation. This section evaluates the cost and performance of the proposed

generated designs when synthesized for a Xilinx Virtex-5 FPGA. We use Xilinx ISE 9.2 to synthe-

2The cost of implementation can only be further reduced in rare cases where all or part of a lookup table or connection

network is redundant.
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Figure 5.4: Throughput versus slices for n = 64, 512, 4096. Labels: number of BRAMs.

size and place/route all designs, and we extract all timing and area measurements after place/route

has completed. In this evaluation, the data words are b = 16 bits wide.

Virtex-5 FPGAs contain on-chip memory structures called block RAM (BRAM). When the

design requires a RAM or ROM of size ≥ 1024 bits, the system maps it to a BRAM. Smaller

memories are created out of the FPGA’s reconfigurable logic elements. This threshold (1024 bits)

is a parameter of the generation tool.

This evaluation quantifies the cost and performance of the following configurations of this dat-

apath: n = 64 with w = 2, 4, 8, 16, 32, and n = 512, 4096 with w = 2, 4, 8, 16, 32, 64. Because

the cost of the implementation does not depend on the specific permutation being performed, we

choose one randomly for each n. Figure 5.4 shows throughput (in gigabits per second) versus FPGA

area (in slices, which are the reconfigurable blocks of the FPGA) for all designs. Each line shows a

different value of n (the problem size), and the different points within a line correspond to different

values of streaming width w: the left-most point corresponds to w = 2; w doubles with each suc-

cessive point. (Recall, the throughput of each design is w words per cycle.) Additionally, we label

several of the points with the number of block RAMs (BRAMs) used by that design.

Figure 5.4 shows that as w increases, the resulting designs exhibit higher throughput, but be-
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come commensurately more expensive (in area). As n increases, the results do not show a significant

change in throughput or area, but a large increase in the number of BRAMs required. This occurs

because the size of all memories grows with n (as shown in Table 5.1).

In order to provide a reference point for comparison, these designs are compared to [20], which

describes a method for generating streaming permutation circuits for a subset of all permutations

and streaming widths.3 The designs produced by [20] utilize one memory array with interconnec-

tion networks at its inputs and outputs; both networks are optimized for the specific permutation

considered. Furthermore, all memory and switch configurations are calculated online; no lookup ta-

bles are used. For an important class of problems, [20] is able to produce designs with the optimum

address logic and switching network (given the assumed architecture).

However, the technique in [20] is only applicable to a small subset of streaming permutations.

The goal is not to improve on [20]’s cost/performance tradeoff; it instead serves as a way to measure

the added costs incurred by moving to the general structure.

The area required by the designs in [20] depends on the permutation being performed (as well as

the permutation size and streaming width). So, we compare against designs for two permutations:

the stride-by-two permutation, which is in the class of least expensive problems supported by [20],

and the bit reversal permutation, which is in the class of most expensive problems. Again, we evalu-

ate designs using a random permutation, since the cost does not depend on the specific permutation

being performed.

We synthesize and place/route these benchmark designs using the previously stated assump-

tions, and present the results in Figure 5.5 for n = 512. Again, the plot shows throughput versus

area and includes the number of BRAMs for several designs. For small values of w, all three de-

signs have similar costs. However, as w increases, the amount of slices and BRAM required for

the general method increases more quickly than those from [20]. If we repeat this experiment for

smaller problem sizes (values of n), the difference between the proposed method and the benchmark

is reduced; for larger values of n, it is increased.

The Spiral hardware generation framework can implement both the general streaming permu-

tation method [19] and the bit-matrix method [20]. Since the bit-matrix method results in lower

3[20] is only able to perform permutations that arise from invertible mappings on the bit representations of the indices,

such as the bit reversal or stride permutations. Of the n! possible permutations on n points, [20] is able to perform

(2m
− 1)(2m

− 2) · · · (2m
− 2m−1), where n = 2m and only when n and w are powers of two.
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Figure 5.5: Comparison of general streaming permutation method with bit matrix method for n =
512 and n = 4096. Data labels indicate the number of BRAMs.

cost, it is used when: (1) the transform size and streaming width are powers of two, (2) the per-

mutation can be represented as a bit matrix, and (3) only one permutation is to be computed with

the same structure. If these conditions are not met, the general streaming method described in this

chapter [19] is used.

Although it is not discussed in this chapter, the compiler also can implement permutations with

streaming width w = 1 trivially using a single memory (one read port and one write port). Data are

written into the memory sequentially, and a ROM is used to encode the read addresses.



Chapter 6

Transform Algorithms

This chapter discusses the transform algorithms presented in Section 2.3 in the context of streaming

reuse and iterative reuse, examining the applicability and limitations of each. Chapter 7 will later

evaluate implementations of these algorithms on FPGA and ASIC.

First, Section 6.1 discusses hardware structures for algorithms for the discrete Fourier trans-

form, including those that are applicable for two-power and non-two-power problem sizes. Then,

Section 6.2 explains algorithms for the two-dimensional DFT and how they can be mapped to hard-

ware with more flexibility than the one-dimensional version. Next, Section 6.3 and Section 6.4

discuss hardware implementation of algorithms for the RDFT and DCT algorithms, respectively.

6.1 Discrete Fourier Transform

Pease FFT. The Pease FFT algorithm with radix r is given by

DFTrt =

(
t−1∏

ℓ=0

Lrt

r · (Irt−1 ⊗DFTr) · C
rt

ℓ

)

·Rrt

r ,

where C is a diagonal matrix, and L and R are permutation matrices. All of its terms can be

used with streaming reuse: the permutations and diagonals as described previously, and the tensor

product Irt−1 ⊗DFTr can be restructured to any width w ≥ r.

In general, larger values of radix r reduce the computational cost (by reducing the number

of multiplications performed). However, this comes at the cost of reduced flexibility, since the

63
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streaming width w must be ≥ r. The evaluations of Chapter 7 illustrate the effects of varying the

radix of this and other algorithms.

This algorithm is a good candidate for iterative reuse, since it only depends on the product

term’s index ℓ in the parameter to the diagonal matrix C, which can be implemented as described in

Chapter 3.2.1. It can be iteratively reused with depth d where d | t (that is, d evenly divides t).

So, this algorithm can be tagged and restructured automatically by Spiral to have streaming

width w and depth d in the following manner:

DFTrt

︸ ︷︷ ︸

stream(w), depth(d)

→

(
t/d−1
∏

k=0

ir

(
d−1∏

ℓ=0

StreamPerm(Lrt

r , w) · (Irt/w ⊗
sr (Iw/r ⊗DFTr))

·StreamDiag(Crt

kd+ℓ, w)

))

· StreamPerm(Rrt

r , w).

Both permutations used here (stride permutation L and digit-reversal permutation R) are imple-

mented using the bit matrix method [20] when r is a power of two, as explained in Chapter 5.2.

For example, consider DFT23 . First, the radix 2 Pease FFT gives the formula

(
2∏

ℓ=0

L8
2 · (I4 ⊗DFT2) · C

8
ℓ

)

·R8
2

which is illustrated as hardware with no sequential reuse or iterative reuse in Figure 6.1. The 8 point

input vector x enters on the left and flows through the datapath, producing output vector y on the

right. Below the figure, each portion of the datapath is annotated with the matrix that describes its

computation. The shaded boxes illustrate the three stages of the product term.

Next, we can apply streaming reuse to this formula. For example, at width w = 2:

DFT23
︸ ︷︷ ︸

stream(2)

→

(
2∏

ℓ=0

StreamPerm(L8
2, 2) · (I4 ⊗

sr DFT2) · StreamDiag(C8
ℓ , 2)

)

· StreamPerm(R8
2, 2).

This is illustrated in Figure 6.2. As before, the three stages are enclosed in shaded blocks. Now, the

permutations are drawn as blocks with two inputs and two outputs, reflecting their streaming width

of w = 2. The multipliers used for the diagonal matrices now have lookup tables attached, because
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Figure 6.1: Pease FFT: DFT23 , no sequential reuse.

Figure 6.2: Pease FFT: DFT23 , streaming width w = 2.

different constants are needed for different portions of the stream. The input data x flows in at a

rate of w = 2 words per cycle, then flows through input permutation R8
2 before flowing through the

three stages and exiting as y. A new input vector can begin flowing into the system as soon as the

previous one has finished entering.

Next, we can apply iterative reuse with depth d = 1.

DFT23
︸ ︷︷ ︸

stream(2), depth(1)

→

(
2∏

ℓ=0

ir
StreamPerm(L8

2, 2) · (I4 ⊗
sr DFT2) · StreamDiag(C8

ℓ , 2)

)

· StreamPerm(R8
2, 2).

Figure 6.3 shows the resulting datapath. Now, the three stages are iteratively reused, collapsed
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Figure 6.3: Pease FFT: DFT23 , streaming width w = 2, depth d = 1.

into one stage with a feedback path. The multiplier’s lookup table is increased to hold the constants

needed for all three iterations. The streaming permutations and basic blocks are identical in all three

stages, so they can be iteratively reused with no added cost. As before, input vector x flows into the

system at a rate of two words per cycle. However, now a new input vector cannot begin streaming

in immediately after the previous one; instead it must wait until the first vector has iterated through.

Iterative FFT Algorithm. The variant of the Iterative Cooley-Tukey algorithm considered in

this work is given by

DFTrt = Lrt

r

(
t−1∏

ℓ=0

(Irt−1 ⊗DFTr)
(

Irℓ ⊗
(

Ert−ℓ

ℓ ·Qrt−ℓ

ℓ

))
)

Rrt

r ,

for radix r. It contains permutation matrices L, Q, and R (all of which are implemented using the

bit matrix method when r is a power of two), and diagonal matrix E. Similar to the Pease algorithm

above, this algorithm can easily be streamed with width w ≥ r.

However, this algorithm differs from the Pease FFT in an important way. Here, the permutation

and diagonal matrices grow smaller and more repetitive as ℓ grows larger. When iterative reuse is

not used, this makes the Iterative Cooley-Tukey FFT less expensive to implement than the Pease

FFT, because the cost of streaming permutation implementation is related to the number of points

being permuted (rt in the Pease algorithm and rt−ℓ in this algorithm).

So, the Pease FFT is less expensive in iterative reuse implementations, and the Iterative Cooley-

Tukey FFT algorithm is cheaper in implementations without iterative reuse.

Mixed-Radix Algorithm. The Mixed-Radix FFT algorithm of radices r and s is given by

DFTrksℓ = Lrksℓ

rk · (Isℓ ⊗DFTrk) · Lrksℓ

sℓ · T rksℓ

sℓ · (Irk ⊗DFTsℓ) · Lrksℓ

rk .
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This algorithm is typically used to compute a transform at a non-native radix size (for example,

DFT512 can be decomposed into DFT2, which can be implemented directly, and DFT256 which

can be implemented with radix 4 or 16). Additionally, this algorithm is frequently used in non-two-

power-sized problems if the problem size is a product of small primes (for example DFT432 can be

broken down into DFT24 and DFT33).

Since this algorithm is comprised only of permutations (L), a diagonal matrix (T ), and parallel

DFTs, streaming reuse can easily be applied with the restriction that the streaming width w must

evenly divide rksℓ and it must be a multiple of rs. For this reason, implementations of this algorithm

quickly lose flexibility as the radix sizes increase.

The individual DFTrk and DFTsℓ blocks can be computed with either the Pease or Iterative

FFT algorithms, depending on whether or not iterative reuse is desired (as described above).

In principle it is possible to use iterative reuse to collapse the two DFT stages into one combined

stage. However, the two blocks (DFTrk and DFT2ℓ) are so different that the overhead of doing so

is high.

Although the algorithm still holds when r = s, there is no benefit of using this algorithm over

the radix r algorithms considered above (Pease and Iterative FFTs).

Bluestein Algorithm. The Bluestein algorithm performs a DFT of any given problem size n by

performing scaling and a forward and inverse DFT of size m where m > 2n− 1.

DFTn = D
(2)
n×m · IDFTm ·D

(1)
m ·DFTm ·D

(0)
m×n,

Typically, this algorithm is used to perform non-power-of-two size DFTs, where m is chosen to be a

power of two. This allows the bulk of the computation to be performed using the Pease and Iterative

Cooley-Tukey algorithms.

Further, the forward and inverse DFTn are closely related in structure, so the two stages of the

algorithm can be iteratively reused in the following way. First, the formula is regrouped:

DFTn = In×m

(
1∏

ℓ=0

Df(ℓ)
m ·DFTg(ℓ)

m

)

·D
(0)
m×n,
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where

f(ℓ) =







−1, ℓ = 0

1, ℓ = 1

and g(ℓ) =







2, ℓ = 0

1, ℓ = 1

.

So, this product term can now be iteratively reused with depth 1 if desired. Then, the inner DFT

block can be iteratively reuse (using the Pease algorithm) or not (using the iterative Cooley-Tukey

algorithm).

6.2 Two-Dimensional Discrete Fourier Transform

As shown in (2.18), the row-column algorithm for the two-dimensional DFT is given by

DFT -2Dn×n

1∏

ℓ=0

(

(In ⊗DFTn) · Ln2

n

)

.

One can use the Pease FFT (2.13), the Iterative Cooley-Tukey FFT (2.15) or the Mixed-Radix

FFT (2.16) to perform the DFTn. Using Pease (with radix r):

DFTn×n =
1∏

k=0

((

In ⊗

((
t−1∏

ℓ=0

(
Ln

r · (In/r ⊗DFTr) · C
n
ℓ

)

)

·Rn
r

))

· Ln2

n

)

=

1∏

k=0

((
t−1∏

ℓ=0

((In ⊗ Ln
r ) · (In2/r ⊗DFTr) · (In ⊗ Cn

ℓ ))

)

· (In ⊗Rn
r ) · Ln2

n

)

,

where t = logr(n). In order to facilitate discussion of this algorithm, one can write it in a simplified

form while still capturing its relevant degrees of freedom:

DFTn×n =

(
1∏

k=0

(
t−1∏

ℓ=0

Pn2(In2/r ⊗DFTr)Bn2

)

Qn2

)

,

where P and Q are placeholders for the permutation expressions written above, and B is a place-

holder for its corresponding diagonal matrix. Using the other algorithms (2.15) and (2.16) similar

expressions are obtained.

These algorithms contain two iterative product terms, as seen above. Each may utilize iterative

reuse, which is characterized with depth parameters d1 and d2 (see Chapter 3.2). This is illustrated

in Figure 6.4.
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(b) d1 = 2. The outer product term is fully unrolled, i.e., not iteratively reused.

Figure 6.4: Illustrations of DFTn×n with outer product term parameterized by d1, inner product

term parameterized by d2, and streaming width w.

Let d2 be the depth of the inner product; d2 can be between 1 and t, provided that t/d2 is an

integer. Each internal block (a shaded region in Figure 6.4) consists of d2 stages of P·(I⊗DFTr)·D,

streamed with w ports. When d2 = t, the Iterative Cooley-Tukey FFT (2.15) is used to decompose

DFTn (or the mixed-radix algorithm if the problem size is not a power of the chosen radix); when

d2 < t, the Pease FFT (2.13) is used. Alternatively, the Mixed Radix FFT can be used to decompose

DFTn as well.

Permutation Q can be implemented with the bit matrix method when n is a power of two.

Let d1 be the depth of the outer product; d1 can be either 1 or 2. When d1 = 1, the outer

product term is iteratively reused (Figure 6.4(a)). When d1 = 2, the outer term is unrolled, giving

two cascaded stages as seen in Figure 6.4(b).
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6.3 Real Discrete Fourier Transform

RDFT from Complex DFT. An RDFT of size n can be computed from a DFT of size n/2 using

the following algorithm

RDFTn =
(
(K ′n

2 ⊗ I2) ·
(
In/4 ⊗ℓ A4(ℓ)

)
· ((K ′n

2 )−1 ⊗ I2)
)
·DFTn/2,

where K ′ is a permutation (thus (K ′ ⊗ I) is also a permutation), A4(ℓ) is a 4 × 4 basic block that

depends on iteration variable ℓ, and DFTn/2 represents an n×n real matrix that is constructed from

the n/2× n/2 complex matrix DFTn/2 as explained in Chapter 2.3.3. While computing, changing

the data vector from a n/2 point complex into a n point real vector is simply a reinterpretation: no

logic is needed.

Any of the DFT algorithms discussed above may be used to compute DFTn/2. As described

previously, the algorithms can be transposed, which moves the bit reversal permutation R to the

left side of the formula, where it can be merged with the (K ′n
2 )−1 ⊗ I2 permutation. K ′ can not be

represented as a bit matrix, so the general streaming method is needed.

This algorithm can be streamed with (real) streaming width w ≥ 2r where r is the (complex)

radix of the implementation of DFTn/2 chosen. Iterative reuse can be applied to DFTn/2 as de-

scribed above.

This algorithm has higher arithmetic cost than the native RDFT algorithms below, but in some

cases, it maps to hardware structures more efficiently. In Chapter 7, both types of algorithms are

evaluated over a space of architectures, and the resulting tradeoffs are discussed.

Native RDFT Algorithm: Constant Geometry. Similar to the Pease FFT algorithm, the radix

2k RDFT can be computed with a constant geometry algorithm:

rDFT2km(0) = V 2km
k,m





logk m
∏

i=0

(Im ⊗ℓ rDFT2k(sk,q(0, 0, fk,m(i, ℓ)))L2km
2m



L2km
km ,

where V and L are permutations, and functions s and f are used to compute the parameter to each

basic block rDFT2k(·).

This algorithm is considered to have constant geometry because each of its logk m + 1 stages
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performs the same permutation L2km
2m . So, this algorithm is ideal for iterative reuse: the only change

from stage to stage occurs in the parameter to rDFT2k(). This parameter controls the scaling

performed in the basic block; the constants and a portion of the addressing logic are pre-computed

and stored in lookup tables; the remaining portion is mapped to logic.

This algorithm can be streamed with streaming width w ≥ 2k, w | 2km. Permutation V cannot

be represented as a bit matrix and is thus implemented using the general method [19].

Native RDFT Algorithm: Iterative. A similar iterative RDFT algorithm with radix 2k is given

by

rDFT2km(0) = V 2km
k,m ·

(
q
∏

i=0

(

Im/ki ⊗W 2·ki+1

i

)

·
(
Im ⊗ℓ rDFT2k(sk,q−i(0, 0, ⌊ℓ/ki⌋))

)

)

·L2km
m ,

where V , W , and L are permutations. V is implemented with the general method described in

Chapter 5.3, while W and L are implemented using the bit matrix method in [20].

This algorithm is similar to the native RDFT algorithm with constant geometry above. However,

the permutation (here, W ) depends on stage index i: smaller values of i result in smaller permu-

tations and lower cost. So, if iterative reuse is not used, this algorithm will have lower cost than

the corresponding instance of the constant geometry algorithm, which requires permutations of size

2km in each stage. This tradeoff is analogous with the tradeoff between the Pease and Iterative

Cooley-Tukey algorithms for the complex DFT, as explained above in Chapter 6.1.

6.4 Discrete Cosine Transform

This thesis considers an algorithm for the discrete cosine transform of type two:

DCT-22k =

√

2

2k
· U2k ·

(
0∏

s=k−1

S
(s)

2k (I2k−s−1 ⊗ L2s+1

2s )

)

PH
2k ,

where S
(s)

2k represents one computational stage:

S
(s)

2k = (I2k−1 ⊗ℓ M
(s,ℓ)
2 ) · diag(gk(ℓ, s)) · (I2k−2 ⊗ℓ H

(s)
4 ) · (I2k−1 ⊗ F2),
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and U , PH , and L are permutations. PH and L can be implemented using the bit matrix method if

the problem size is a power of two, but U must always be implemented using the general streaming

method.

Each of the terms in this algorithm easily maps to streaming with width w ≥ 4. If the H4 matrix

is treated as a streaming permutation instead of a basic block, the algorithm may be streamed with

w = 2, although this gives added overhead.

As the algorithm goes from left to right, the permutation (Iwk−s−1 ⊗ L2s+1

2s ) grows more local,

and thus less expensive to perform on streaming data. The product term can be mapped to iterative

reuse, however this dependence of the permutation on the stage number s means that added overhead

would be required to support all k permutations within one memory block (see discussion at the end

of Chapter 5.3.1). Instead, other constant geometry algorithms could be used to support iterative

reuse with less overhead (for example, [15]).



Chapter 7

Evaluation

This chapter presents a set of experiments evaluating the designs generated by Spiral based on the

methods described in Chapter 4. The results shown here demonstrate the following aspects of the

Spiral-generated hardware implementations:

1. Cost/performance tradeoff. Hardware cores generated by Spiral span a tradeoff space be-

tween cost (in resources required) and performance (typically throughput). Users can then

make a choice along the cost/performance tradeoff space to pick the design that best meets a

particular application’s needs.

2. Algorithmic and architectural freedoms. The freedoms allowed by this system enrich the

cost/performance tradeoff space. That is, the flexibility at both the algorithmic level and data-

path mapping level contribute to the set Pareto set of best designs produced by the generation

tool.

3. Quality of designs. The cost and performance of the designs automatically generated by

Spiral are comparable to that of existing platform-tuned benchmarks, when available.

4. Target flexibility. The generation system allows flexibility in both the implementation target

(FPGA, ASIC) and data type (fixed point, floating point).

5. Problem flexibility. Spiral is able to generate implementations for multiple transforms, in-

cluding the DFT (both with two-power and non-two-power problem size), DCT, RDFT, and

multi-dimensional transforms.

73
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The remainder of this chapter is organized as follows. First, Section 7.1 describes the evalu-

ation methodology used for this set of experiments, including FPGA and ASIC synthesis. Then,

Section 7.2 gives a detailed design space exploration example including evaluation of the effects

of different design parameters. Next, Section 7.3 shows results for implementations of the DFT

on FPGAs including fixed and floating point data formats and both two-power and non-two-power

problem sizes. Then, Section 7.4 shows results of an ASIC evaluation of fixed and floating point

DFTs, and looks at power and area versus performance. Further, frequency scaling is discussed in

Section 7.4.2 and Section 7.4.3 discusses joint power/area optimization under a fixed performance

constraint. Lastly, Section 7.5 shows example results from other transforms, and Section 7.6 sum-

marizes and provides some concluding remarks.

7.1 Methodology

The compilation flow described in Chapter 4 has been implemented in the following way. First,

the algorithm generation, formula rewriting, and basic block matrix compilation stages have been

built inside of Spiral. The tools to factor streaming permutations as described in Chapter 5 are built

partially within Spiral and partially as a separate C program based on the MiniSat SAT solver [31],

which is used to perform the factorization (5.3). Lastly, a Verilog backend written in Java takes

as input a hardware formula and outputs synthesizable register-transfer level Verilog. The entire

compilation flow is initiated and run through Spiral.

All of the experiments here are conducted independent of the data bandwidth that may be avail-

able to the implemented core. This is done because the implementations produced by Spiral can

be integrated in different types of systems. In some, all data may be produced and consumed on

chip, potentially allowing a large amount of data to be processed by the core. Other systems may

require input and output data to be transferred on and off chip before and after each computation;

the throughput of these systems may be limited by available bandwidth.

The bandwidth required for each design presented in the experiments presented below can easily

be calculated. Performance in these experiments is expressed as throughput in billions of samples

per second. For a design running at t billion samples per second with a data type requiring b

bytes per sample, the total amount of bandwidth (in gigabytes per second) needed is given by 2bt.
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For example, some of the experiments below consider 16 bit fixed point data types. For complex

transforms (such as DFT), this means 4 bytes are required per sample. So, a throughput of 1 billion

samples per second would require a total of 8 gigabytes per second (4 for input and 4 for output).

7.1.1 FPGA

This section describes the procedures used in the FPGA (field-programmable gate array) evaluations

described in this chapter. All FPGA experiments done target the Xilinx Virtex-6 XC6VLX760 or

the Xilinx Virtex-5 XC5VLX330 FPGAs (hereafter referred to as Virtex-6 and Virtex-5). All FPGA

synthesis is performed using Xilinx ISE version 12.0, and the area and timing data shown in the

results are extracted after the final place and route are complete.

In order to determine the maximum clock frequency obtainable for each design, it is often

necessary to iterate over multiple design options and target frequencies. This is done using the

Xilinx-provided Xplorer script, configured to use a maximum of four place and route runs to find

the best frequency.

Arithmetic units. The experiments detailed here use two data types. For fixed point data types,

the numeric computations are simply specified using the + and * operators. Single precision floating

point is implemented using IP cores generated using the Xilinx LogiCore IP tool.

The Xilinx FPGAs contain dedicated arithmetic units called DSP slices (DSP48E on the Virtex-

5 and DSP48E1 on the Virtex-6). DSP slices contain hard multipliers, accumulators, registers, and

interconnect. The multipliers in these slices are used in fixed point and floating point multiplication.

Additionally, the multipliers are used as shifters for floating point addition. The single precision

floating point adder and multiplier each use two DSP slices, while the 16 bit fixed point multiplier

uses one DSP slice.

Memory. Memories can be mapped to two types of structure on Xilinx FPGAs: block RAM

(BRAM) or distributed RAM. BRAMs are 36kb dedicated hard memories built into the FPGA. The

Virtex-6 contains 720 BRAMs; the Virtex-5 contains 288. Additionally, memory structures can be

constructed out of the FPGA’s lookup tables (LUTs) which are normally used as logic.

The Spiral hardware compiler can choose between distributed and block RAM by outputting

directives for the Xilinx ISE tool. The user can control how Spiral decides whether a memory

should be implemented as block or distributed RAM using two tunable methods. First, a budget-
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based method allows the user to specify the maximum number of BRAM to use. Then, the tool

globally sorts all memory structures needed in the design by size; it chooses which structures to

map into the budgeted number of BRAMs in order to maximize utilization.

Secondly, a threshold option allows the user to specify a threshold memory size (in bytes). Any

memory structure of that size or larger is then mapped to BRAM. For example, the user could say

only to utilize a BRAM if the memory structure implemented would use 8 kilobits of it.

The experiments presented in this chapter use the budget method with a budget of 256 BRAMs.

This represents approximately 35% of the BRAM on the Virtex-6 FPGA. For the designs considered

here, this budget exceeds the memory requirement of the system; distributed RAM is not used for

large memories.

7.1.2 ASIC

This chapter also contains a set of experiments evaluating the Spiral-generated cores when syn-

thesized for an application-specific integrated circuit (ASIC). ASIC synthesis is performed using

Synopsys Design Compiler version C-2009.06-SP5, and targets a commercial 65nm standard cell

library. Area, timing and power estimates are obtained from Design Compiler post-synthesis.

Arithmetic units. Synopsys DesignWare is used to construct hardware for addition, subtraction,

and multiplication (for both fixed point and floating point) in the following way. For each arithmetic

unit, a combinational adder/subtractor/multiplier is instantiated, and pipelining is then performed by

Design Compiler: a number of registers are placed before/after the arithmetic unit, and tool is run

in retiming mode. Then, synthesized results are saved in binary format and are instantiated in

the Spiral-generated designs. Different levels of pipelining are needed for different data types and

different frequencies. The number of stages needed can be determined for a given frequency by

finding the fewest number of registers needed to meet timing. Table 7.1 summarizes these results

for 16 and 32 bit fixed point, and single precision floating point.

Memory. No memory compiler was accessible for the particular standard cell library used in

these evaluations. So, CACTI version 6.5 [32], a memory estimation tool, is used to estimate power

and area for all required memories.
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Latency (cycles)

frequency (MHz) 16b add 16b mult 32b add 32b mult fl. point add fl. point mult

≤ 400 2 2 2 2 2 2

600 2 2 2 2 4 2

800 2 2 2 2 4 4

1000 2 2 2 4 6 6

1200 2 4 2 6 6 6

1400 2 6 2 6 8 8

1600 2 6 2 8 10 10

1800 2 10 4 10 12 14

2000 2 10 6 12 18 18

Table 7.1: Latency (cycles) of arithmetic operators at given frequencies.

7.2 Design Space Exploration Example

In order to examine how different design space freedoms (algorithm, radix, iterative reuse, stream-

ing reuse) contribute to the space of designs, this section provides a detailed evaluation of Spiral-

generated implementations of DFT256 and DFT1024 on a Xilinx Virtex-6 FPGA. Figure 7.1 shows

throughput (in billion samples per second) versus area (given in slices) on the Xilinx Virtex-6

FPGA. Given a fixed problem size n, performance (in pseudo-gigaoperations per second, assuming

5n log2 n operations per DFTn) is proportional to throughput; the right-hand y-axis shows perfor-

mance for each design.

Different data markers are used to illustrate the different parameters: an algorithm’s radix r and

the implementation’s depth d (for iterative reuse). The diamond-shaped markers indicate designs

with full IR (iterative reuse), and the triangular markers indicate partial IR. Lastly, designs marked

with circles and squares contain no IR. For each series, the streaming width w starts from w = r

and goes up to 32.

As discussed above in Chapter 6.1, Spiral generates hardware cores for the DFT using different

algorithms, depending on the situation. In Figure 7.1, the algorithm can be determined based on the

parameters displayed. First, the Pease FFT algorithm (2.13) is used when full IR is used (that is,

d = 1). So, for DFT256, the black, gray, and white diamonds represent the Pease FFT with radix

r = 2, 4, and 16, respectively. For DFT1024 the same data markers represent the same algorithm

with radix r = 2, 4, and 8.

When IR is not used (represented as circles and squares), two algorithms are used, depending

on the radix r: the Iterative FFT (2.15) and the Mixed-Radix FFT (2.16). If the problem size n can
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Figure 7.1: Exploring DFT256 and DFT1024, fixed point, FPGA, throughput versus slices. Data

labels indicate the number of block RAMs and DSP48E1 slices required. Data markers are used to

illustrate values of radix r and depth d.
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be represented as n = rk for integer k, then the Iterative FFT algorithm is used directly. If that is

not the case, then the Mixed-Radix algorithm decomposes the problem into two stages: one that can

be expressed as a power of radix r, and one smaller stage: n = rk · n/(rk). For example, DFT1024

can be computed with and three radix 8 stages and one radix 2 stage: 1024 = 83 · 2.

This evaluation omits designs that use the Mixed-Radix algorithm with IR (iterative reuse) de-

signs (for example, implementing DFT1024 with an iteratively-reused implementation of radix 8

DFT512 and one stage of DFT2), although designs of this kind are easily generated using the pro-

posed system.

The black line indicates the Pareto optimal set of designs for each graph. These designs are

those that give the best tradeoff between the two metrics being considered (here, throughput and

area). So, if a designer only cared about those two measurements, the points along the line are

the only ones that he or she must consider. However, other costs are associated with FPGA imple-

mentations: required memory (number of block RAMs or BRAMs), and dedicated arithmetic units

called DSP48E1 slices. Several points in each graph are annotated with the number of BRAMs (first

number) and DSP slices (second number) required.

The set of designs considered cover a wide tradeoff space. For DFT256, the fastest design is

76× faster than the slowest, but it requires 33× the number of slices, 16× the number of BRAMs,

and 59× the number of DSP slices. Similarly, the fastest DFT1024 implementation is 132× faster

than the slowest, but it uses 49× the slices, 96× the BRAM, and 107× the DSP slices.

In each graph, the smallest and slowest design is an IR core with depth d = 1 generated from the

Pease FFT with radix r = 2 and streaming width w = 2. From there, the black diamonds illustrate

the same algorithm, radix, and depth, with increasing streaming width: w = 2, 4, 8, 16, 32. As the

streaming width increases (following the line of black diamonds), the designs increase in throughput

and in cost. Quickly, the radix 2 IR designs become Pareto-suboptimal. The next Pareto-optimal

point is r = 2, w = 2, and d = 2; now the IR product term has twice the depth. Of the designs with

partial IR, only this point contributes to the Pareto front.

Next, the gray diamonds show the d = 1 designs from the Pease radix 4 algorithm, with width

w = 4, 8, 16, 32. In both plots, the IR radix 4 points contribute just one design to the Pareto

front. Following that, the circles and squares represent fully streaming designs (those without IR),

which provide the rest of the Pareto front (while the IR designs previously discussed provide less
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extra throughput given the extra area cost). So, the IR designs provide the small/slow end of the

Pareto optimal front, but as they scale larger, their performance per area is quickly eclipsed by the

streaming designs.

Further interesting comparisons can be made by examining the behavior of different radices. For

example, in the DFT256 experiment, there are three points near the Pareto front at approximately 3.5

billion samples per second and approximately 2,000 slices. Each of these designs is fully unrolled

and streamed with width w = 8; their only difference is in radix r (2, 4, or 8). All three points are

similar in throughput and area, however the data labels indicate that they require differing amounts

of BRAM and DSP slices. The least expensive of the three is the radix 4 design, which requires

only 16 BRAM and 60 DSP slices.

It may seem counterintuitive that the radix 4 design can provide better results here than the

radix 8, since in general higher radices lead to lower arithmetic and permutation costs. However,

the difference here lies in algorithm: at radix 8, the overhead of using the Mixed Radix algorithm

to decompose DFT256 into DFT4 and DFT82 offsets the savings of using a radix 8 algorithm for

a portion of the computation. In the DFT1024 plot, the equivalent radix 4 and 8 designs are much

closer: the radix 8 design uses slightly more area but fewer BRAMs and DSP slices. The Mixed-

Radix algorithm is most useful when the problem size is such that r = 2 is the only natural radix

supported (for example, Mixed-Radix FFT is necessary to compute DFT128 with any radix other

than 2).

7.3 Discrete Fourier Transform on FPGA

This section shows results of a detailed study of implementations of the discrete Fourier transform

on FPGA. Section 7.3.1 discusses fixed point implementations, Section 7.3.2 discusses floating

point implementations, and Section 7.3.3 shows implementations when the problem size is not a

power of two.

7.3.1 Fixed Point

Figures 7.2 and 7.3 show throughput (in billion samples per second) versus area (in slices) of the

discrete Fourier transform of size 64, 256, 1024, and 4096 with 16 bit fixed point data format on
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the Xilinx Virtex-6 FPGA. The secondary axis presents performance in pseudo gigaoperations per

second calculated for all algorithms assuming 5n log2 n operations per n point transform. Here,

gray diamonds represent Spiral-generated designs across the degrees of freedom discussed in Chap-

ter 7.2. The solid line connects the Spiral-generated Pareto optimal points. Lastly, the black circles

represent the four designs from the Xilinx LogiCore FFT IP library [33]. These designs were imple-

mented using LogiCore and evaluated using the same Xilinx tools as the Spiral-generated designs.

As discussed in Chapter 7.2, a number of design freedoms are used along the Pareto front,

including designs with and without iterative reuse, and designs with streaming width w up to 32.

In all experiments shown here, the Xilinx IP cores closely match the cost/performance of the

smallest Spiral-generated designs. However, as more slices are allowed to be consumed, the Spiral-

generated designs are able to obtain a commensurate increase in throughput. For example, for the

DFT1024 study, the largest/fastest design requires 49× the slices, 96× the BRAM, and 107× the

DSP48E1 slices of the smallest/slowest design point, but has 132× the throughput. Compared with

the largest/fastest design in the Xilinx LogiCore library, the fastest Spiral-generated design uses

11.8× the slices, 19.2× the BRAM, and 18.8× the DSP slices while providing 16.5× throughput.

Similar trends are seen across the experiments as the problem size increases. However, the

absolute area requirements increase with the problem size. This is primarily caused by the added

number of stages in designs without iterative reuse, and in the added cost associated with larger

permutations and diagonal matrices. Also, it is important to note that although the throughput stays

roughly the same as the problem size increases, the performance (operations / second) increases.

If latency were used as the performance metric instead of throughput, similar trends would also

be seen, except the designs without iterative reuse (the higher performance/cost designs) would

exhibit a performance penalty because they are optimized for throughput: different portions of the

datapath process different data vectors at once. The iterative reuse designs are in a sense optimized

for latency-based computation because they only employ a small amount of overlapping of multiple

problems.

7.3.2 Floating Point

Next, Figures 7.4 and 7.5 repeat the same set of DFT experiments on FPGA using single precision

floating point (32 bit). Again, the x-axis shows FPGA area in terms of slices, and y-axis shows
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throughput in billions of samples per second (left) and performance, now in billions of floating

point operations per second (Gigaflop/s) on the right.

The Xilinx LogiCore FFT [33] does not provide a full floating point implementation. Rather,

it provides an implementation where the input and output are given in single-precision floating

point, but internally, computations are performed using a fixed point implementation with twiddle

factors stored as 24 or 25 bit fixed point values. This results in arithmetic units that are much less

expensive to implement than the full floating point implementations generated by Spiral. The four

architectures provided by Xilinx LogiCore (with 25 bit twiddle factors) are shown as black circles

in Figures 7.4 and 7.5. Although the Xilinx designs have lower-cost fixed point arithmetic units,

they compare closely with the Spiral-generated designs. The biggest difference can be seen on the

largest/fastest of the four Xilinx designs.

Additionally, for all but DFT64, a data point corresponding to the 4DSP floating point FFT

processor [34] is shown (black triangle). This is a commercially-available IP core that is capable

of performing the DFT on a range of input sizes. That is, it is a floating point DFT processor with

runtime-configurable length. Area and performance numbers were estimated based on data given

in its data sheet [34]. As shown, the 4DSP core has a considerable area overhead relative to the

Spiral-generated or Xilinx designs. However, its runtime configurability leads to added overhead,

so a direct comparison cannot be made.

Comparing the cost and performance of the Spiral-generated floating point designs (Figures 7.4

and 7.5) to the fixed point implementations (Figures 7.2 and 7.3), the main difference lies in the base

cost of computation. This leads to a much higher cost to achieve the same throughput in a floating

point implementation as a fixed point implementation. This cost is also affected by added overhead

in permutations, diagonal matrices (ROMs to store constants) and registers within the system, which

now must store 32 bits instead of 16.

Further, the higher base cost reduces the space of feasible architectural options. In the fixed

point experiments, a streaming width up to 32 complex words per cycle was implemented. Here,

the maximum streaming width achieved (when iterative reuse is not used) is 16 words per cycle.
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7.3.3 DFT with Non-Power-of-Two Problem Size

When the problem size n of DFTn is not a power of two, a variety of algorithms (discussed in

Chapter 6.1) can be utilized. Here, four values of n are considered that illustrate four different

classes of problem size. Figures 7.6 and 7.7 examine the throughput versus area for each design.

Data labels are used to indicate the number of Virtex-5 DSP slices consumed by each point in the

Pareto-optimal set. This evaluation was published in part in [35].

Large prime size. First, Figure 7.6 (top) shows throughput versus area for implementations of

DFT499. Because 499 is a large prime number, the only applicable option among those considered

is the Bluestein FFT algorithm. Each black diamond represents one Bluestein-based datapath, and

the black line illustrates the designs in the Pareto optimal set. The slowest design requires approx-

imately 1,500 slices and has a throughput of 11 million samples per second. The fastest is about

18× larger but 60× faster.

Composite number with larger prime factors. Next, Figure 7.6 (bottom) shows results for

DFT405. In addition to the Bluestein algorithm, the mixed radix FFT algorithm can be applied to

this problem; it decomposes DFT405 into DFT34 and DFT5. This enables two additional designs

(with streaming width 3 · 5 = 15), shown as gray circles. Although the larger of these designs

provides a much higher throughput than a similarly sized Bluestein-derived design, it is important

to note that the cross-over point (where the mixed-radix designs become the better choice) is large

(at approximately 15,000 slices). So, if design requirements require a smaller, lower throughput

core, the Bluestein algorithm is a better choice.

Composite number with smaller prime factors. Third, Figure 7.7 (top) illustrates throughput

and area for DFT432. Similar to the previous example, DFT432 can be implemented using the

mixed radix algorithm. However, unlike DFT405, here DFT432 can be decomposed into smaller

radices: 2 and 3 (because 432 = 24 · 33). Since the radices are smaller, the mixed radix algorithm

can be used with more options for streaming width, yielding a larger set of Pareto-optimal designs

than for DFT405. The Bluestein designs are still the best choice for the smallest/slowest designs,

but the cross-over point (about 9,000 slices) is lower than in the previous example.

Power of small prime. Lastly, Figure 7.7 (bottom) shows results for DFT243 = DFT35 . Be-

cause the problem size is a power of three, the radix 3 Pease and Iterative FFTs are applied directly
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(shown as gray circles). Here, the cores built with the radix 3 algorithms surpass the performance

of the Bluestein cores at a much lower area than in the other problems, since the single-radix design

can be built with less logic than in the previous multi-radix designs.

Comparison. The Xilinx LogiCore library contains a non-two-power sized DFT core, which

is a processor that performs a number of non-two-power-sized DFT computations, and is run-time

configurable in transform length. Of the example sizes considered in this evaluation, the LogiCore

DFT can only perform DFT432. Its performance and area are given as a white square in Figure 7.7

(top).

7.4 Discrete Fourier Transform on ASIC

As described above in Chapter 7.1.2, Spiral-generated hardware cores can be synthesized for a

commercial 65nm standard cell library. First, Section 7.4.1 presents a baseline evaluation of designs

with maximum clock frequency. Then, Section 7.4.2 examines frequency scaling and its effect on

performance, power, and area. Lastly, Section 7.4.3 uses frequency scaling to implement a set of

designs that meet a given throughput target while allowing a tradeoff between power and area.

7.4.1 Baseline: Maximum Frequency

First, this section presents an evaluation of the DFT on ASIC. Here, designs are synthesized with

the goal of maximizing the clock frequency. Figures 7.8–7.11 show throughput versus power and

area for DFT64, DFT256, DFT1024 and DFT4096 using 16 bit fixed point data. Figures 7.12–7.15

repeat the same experiments utilizing single precision floating point.

In these plots, the y-axis represents throughput in billions of samples per second (left) and

billions of operations (or floating point operations) per second. Additionally, two data markers are

used: black diamonds for cores with iterative reuse, and gray circles for fully streaming designs,

(that is, those without iterative reuse). A gray line is used to highlight the Pareto optimal set.

Similar to the FPGA results, here the iterative reuse designs provide the least expensive (smallest

and lowest power) but slowest designs. For example, for DFT1024 with fixed point data, the fastest

design is approximately 100× faster than the slowest, but requires 11× the area and 24× the power.

Also similar to the FPGA experiments, designs with iterative reuse comprise a larger portion of the
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Pareto optimal set of designs when the problem size is large.

Floating point designs are considerably more expensive than their 16 bit fixed point counterparts.

Further, the increased area and complexity lead to lower synthesized frequencies. For example,

the fastest point considered in the fixed point DFT1024 experiment can be synthesized to run at

858 MHz, producing a throughput of 27.5 billion samples per second. The corresponding floating

point design only reaches 730 MHz, giving a slower throughput of 23.4 billion samples per second.

Further, the area and power requirements increase dramatically: from 3.7 mm2 and 2.4W to 18.3

mm2 and 12.2 W.

For both the fixed point and the floating point experiments, designs up to streaming width w =

32 are considered. Wider designs can easily be generated, but become increasingly more difficult

for Design Compiler to synthesize, increasing the synthesis time and memory requirement, so they

are not considered in these experiments.

7.4.2 Frequency Scaling

The previous results showed throughput versus power and area when all designs were synthesized

targeting the maximum frequency. However, when power efficiency is a concern, it is also necessary

to consider designs running at lower clock frequencies. This section demonstrates the trends in

performance, power, and area when designs are re-synthesized at lower frequencies. In addition to

savings that may be provided by the synthesis tool, area and power are further saved by reducing

the amount of pipelining necessary in the arithmetic units (as previously shown in Table 7.1).

Figure 7.16 revisits the 16 bit fixed point DFT1024 experiment detailed above. Now, the Pareto

suboptimal points are removed, leaving only the Pareto front, shown as black diamonds. Then gray

diamonds are used to show how throughput, power, and area of five of the Pareto optimal designs

are effected as the designs are regenerated and re-synthesized targeting 200, 400, and 600 MHz.

As the frequency is decreased, throughput and power are reduced commensurately. As seen in

the bottom graph of Figure 7.16, area is reduced only slightly as frequency decreases.

This shows that it can be more power-efficient to generate a larger, more parallel design and run

it at a lower frequency than to build a smaller design running at a higher clock frequency. These

larger designs have more algorithmic freedom, so they can be built with more efficient algorithms,

using higher radices.
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As an example, Figure 7.16 shows a point from the original Pareto optimal set at approximately

7 billion samples per second, with area of 0.9 mm2 consuming approximately 0.5 Watts (while

clocked at 1.4 GHz). However, similar throughput can be obtained using a larger design clocked

at 200 MHz, which requires only 0.3 W. However, this leads to an in increase in area; the larger

design requires 2.2 mm2. This type of tradeoff between area and power given a fixed performance

constraint is explored in the following section.

Although the graphs in this section only demonstrate these effects on five points from one de-

sign, more evaluations (not shown here) confirm these trends.

7.4.3 Power/Area Optimization Under Throughput Requirement

Often, a design requires that a transform be implemented to reach a given throughput requirement.

The frequency scaling experiments discussed above can be modified to reflect the type of exploration

required for such a situation.

Figure 7.17 again studies fixed point implementations of DFT1024 on 65nm ASIC in the pres-

ence of frequency scaling. However, now the designs are not synthesized at arbitrary frequencies.

Instead, each is synthesized at precisely the frequency needed to yield a performance of a fixed

throughput target: two billion samples per second, illustrated with the dashed line. As shown in the

top plot, reducing the frequency of the more parallel designs yields much lower power at the target

throughput. However, as shown in the bottom plot of Figure 7.17, this requires a much larger area

than the less parallel designs.

This process results in nine different designs, each with equal throughput. Some require less

power but more area; others the opposite. Figure 7.18 collects the set of possible tradeoffs and

displays them graphically. The y-axis shows power of each design, while the x-axis shows the area.

The black line highlights the five designs that are Pareto optimal with respect to power and area.

Since performance is equivalent for each design, the designer can then choose whichever point best

matches the required power and area.

Although the results here and in Section 7.4.2 examine frequency scaling only for ASICs, this

technique should extend to FPGA as well.
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7.5 Other Transforms

Although most of this evaluation has focused on the discrete Fourier transform, Spiral generates

designs for other transforms as well. This section demonstrates results for the two-dimensional

discrete Fourier transform DFT -2D, the real discrete Fourier transform RDFT, and DCT-2, the

discrete cosine transform of type 2.

7.5.1 Two-dimensional DFT

As discussed in Chapter 6.2, the row-column algorithm for computing the two-dimensional DFT

consists of two iterative product terms, giving two opportunities for iterative reuse: the outer term

implemented with depth d1, and an inner term with depth d2, as illustrated in Figure 6.4. These two

degrees of freedom in iterative reuse are combined with freedom in the streaming width as well as

the algorithmic freedoms (including radix), yielding a wide space of designs to explore.

Figure 7.19 illustrates throughput versus area for DFT -2D16×16 and DFT -2D64×64, with 16

bit fixed point data type on Xilinx Virtex-6 FPGA. Four different data markers are used to illustrate

whether each design employs iterative reuse on the inner and outer product.

The gray line highlights the Pareto optimal set of designs, which includes designs where: both

products are iteratively reused (diamonds), only the outer product is iteratively reused (circles), and

neither product is iteratively reused (squares). Although not visually illustrated, the Pareto optimal

set also depends on the freedoms in streaming width, algorithm, and radix to span the full tradeoff

space. If any of those freedoms were restricted, the set of Pareto optimal points would be reduced.

7.5.2 Real Discrete Fourier Transform

Four algorithms for the real discrete Fourier transform (RDFT) are defined in Section 2.3.3. First

is the “Complex half-size” algorithm (2.19), which casts an RDFTn into a DFTn/2 with a post-

processing stage. When this algorithm is used, all of the DFT freedoms discussed above are relevant.

Then, three native RDFT algorithms are defined: a constant geometry algorithm (2.21), an itera-

tive algorithm (2.22), and a recursive algorithm (2.20). As explained in Section 6.3, algorithm (2.21)

is used when iterative reuse is requested, algorithm (2.22) is used when no iterative reuse is utilized,

and the recursive algorithm (2.20) is used to perform the basic blocks.
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Figure 7.19: DFT -2D16×16 and DFT -2D64×64, fixed point, throughput versus area on FPGA.
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Lastly, it is possible to compute an RDFTn using an algorithm for DFTn by simply utilizing

the real inputs only. This technique has higher algorithmic cost than the others, but can serve as a

useful baseline for comparison.

Figure 7.20 shows throughput versus area for Virtex-5 FPGA implementations of RDFT128

and RDFT2048. In both plots, the different data markers represent the different algorithms listed

above: circles for the complex half-size algorithm, diamonds for the native RDFT algorithms, and

triangles for the complex DFT algorithm. Streaming widths are considered from w = 4 to w = 32.

In this experiment, Spiral’s memory options are set to allow no block RAMs to be utilized so that

any differences in memory requirements between the algorithms are included within the final area

count.

For both plots, the smallest point on the Pareto optimal front is the point corresponding to the

complex DFT algorithm. From there, however, the complex algorithm becomes suboptimal, due to

its increased arithmetic cost. Then, as the amount of area increases, the native RDFT algorithms ap-

pear on the Pareto front (diamonds), followed by the complex half-size RDFT algorithms (circles).

The exact trend and ordering of these points depends on which radices are available based upon the

problem’s size.

7.5.3 Discrete Cosine Transform

This thesis also includes an evaluation of an algorithm (2.23) for the DCT of type 2. Other similar

algorithms suitable for hardware generation with Spiral are given in [14, 16, 15].

Figure 7.21 shows throughput versus area for DCT-2n for n = 64, 256, 1024, 4096 on the

Xilinx Virtex-6 FPGA. Each line represents one value of n with streaming width starting from

w = 4 (bottom-left) and increasing as the area/throughput increases. All points shown here are fully

streaming (that is, no iterative reuse is utilized). Several designs are annotated with the number of

BRAMs and DSP slices consumed by each design.

7.6 Evaluation Summary

This chapter provides an evaluation of FPGA and ASIC implementations of transforms generated by

Spiral using the techniques presented in this thesis. In addition to the two platforms, the experiments
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presented here include different data types (fixed point and floating point) and different transforms

(DFT, DFT -2D, DCT-2, RDFT).

Given a problem, a datatype, and a platform, Spiral is able to provide a space of designs with

varying performance and costs. This set of designs spans multiple algorithmic options and multiple

ways of mapping from algorithm to datapath. The flexibility that Spiral allows in these design

dimensions allow the user to easily explore a wide space of designs in order to determine the one

that best meets his or her goals.

Next, Chapter 8 uses the proposed Spiral hardware generation framework to explore and imple-

ment designs used in real-time transceivers for orthogonal frequency-division multiplexing (OFDM)

for optical interconnects. Then Chapter 9 discusses related work, and in particular compares the de-

signs considered here with approaches found in the literature.



Chapter 8

Orthogonal Frequency-Division

Multiplexing for Optical Networks

Orthogonal frequency-division multiplexing (OFDM) is a multi-carrier modulation technique that

is widely used in communication applications. The most computationally expensive portion of

OFDM is computing the DFT and its inverse. Recently, the optical communications community has

considered OFDM as a way to reduce the cost of short distance optical interconnect (for example,

in data centers) or improve the performance of long distance links.

This chapter describes an application study where the Spiral hardware generation system is used

to provide implementations of the DFT and IDFT used in optical OFDM transmitters and receivers.

This work was published in [36, 37, 38, 39] in collaboration with the listed coauthors.

8.1 FPGA Prototype

This section describes the construction of an FPGA-based prototype of an optical transmitter (de-

tailed in [36, 37, 38]). Figure 8.1 shows a high-level view of this system, implemented in part on a

Xilinx Virtex-4 FX 100 FPGA. First, input bits enter the system, and are mapped to complex sym-

bols using quadrature phase-shift keying (QPSK), which maps two bits into one of four complex

numbers. Then, a collection of symbols are fed as an input vector into an IDFT128 core. Then, the

IDFT is computed, and the output data travel out of the FPGA into a 4-bit digital-to-analog con-

verter, (running at 21.4 billion samples per second), and into a Mach-Zehnder optical modulator.

110
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Figure 8.1: OFDM FPGA prototype transmitter.

Each output frame (128 samples) encodes 25 QPSK symbols, totaling 50 bits. Thus, the system

transmits at a rate of 21.4 × 50/128 = 8.35 gigabits per second. The transmitter’s bit error rate is

less than 10−3.

The remainder of this section describes how the Spiral hardware generation tool was used in

the exploration and implementation of the IDFT128 needed within this transmitter. The IDFT core

operates on fixed-point complex data and must appropriately scale the data to guarantee that over-

flow will not occur. The implementation must support a throughput of one transform per cycle (128

complex samples per cycle) at a frequency of 167.25 MHz. This gives an overall throughput re-

quirement of 167.25 million transforms per second or 21.4 billion samples per second. Typically,

hardware implementations of the IDFT utilize sequential reuse, as described in Chapter 3. However,

in the proposed application, all 128 data elements must be processed in parallel (as opposed to a

few at a time) in order to meet the throughput requirement. Therefore, a fully unrolled datapath

(one that does not include any sequential reuse) is feasible. Such a datapath requires a large number

of computational elements, but allows additional freedom in the algorithm selection. This design

study includes evaluation of automatically generated IDFT cores derived from two families of IFFT

algorithms: the Pease algorithm (2.13), which is regular and simple, and algorithms based on the

Cooley-Tukey algorithm (2.12), which has a less regular structure, but when higher radices are used,

lower computational cost.
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Figure 8.2: Area versus fixed-point precision of IDFT cores for OFDM on FPGA.

Pease IFFT Algorithm. The radix 2 Pease IFFT algorithm has a highly regular structure and is

frequently used in hardware implementations of the IFFT. The algorithm (for n data points) consists

of log2(n) stages, each performing n/2 “butterflies” or basic blocks that perform one addition,

one subtraction, and one complex multiplication. A generated fully unfolded implementation for

n = 128 requires 2308 adders/subtractors and 908 multipliers (each operating on real values).

The tool’s automatic pipelining results in 36 stages. Figure 8.2 (black circles) plots the number

of FPGA slices (reconfigurable logic elements) required against the fixed-point precision (in bits).

Each design is synthesized and plate/routed using the Xilinx Integrated Software Environment (ISE)

suite of FPGA tools. Using this algorithm, only the 4-, 6-, and 8-bit designs fit on the target FPGA.

Searching across a family of algorithms. Next, a wider set of IFFT algorithms are considered,

based on (2.12), which is recursive. Using Spiral, many different breakdowns of these algorithms

are generated and flattened into an unrolled structure. Then, search is employed to identify the

algorithm with the lowest algorithmic cost. For this system, the best algorithm found is a mix of

radix 8 and radix 16 IFFTs, resulting in 2192 adders/subtractors and 664 multipliers (a reduction

of more than 25% of the multipliers used in the Pease implementation). Again, designs based on
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Fixed point precision (number of bits)

4 6 8 10 12 14

Mean RMS Error 6.6 × 10−2 1.9 × 10−2 4.9 × 10−3 1.2 × 10−3 3.0 × 10−4 7.5 × 10−5

Std. Dev. RMS Error 2.2 × 10−3 5.4 × 10−4 1.3 × 10−4 3.6 × 10−5 8.6 × 10−6 2.2 × 10−6

Mean SNR 8.9 × 10−2 1.3 2.0 × 101 3.3 × 102 5.3 × 103 8.8 × 104

Std. Dev. SNR 6.2 × 10−3 7.8 × 10−2 1.1 1.9 × 101 3.0 × 102 5.1 × 103

Table 8.1: RMS error and SNR for IDFT128 designs.

this algorithm are generated for various values of fixed-point precision. Figure 8.2 plots the number

of slices needed for each design (as black triangles). Designs based on this algorithm require on

average 37% fewer slices than their Pease IFFT counterparts. Designs of up to 12 bits of precision

are able to fit on the target FPGA, an improvement of four bits.

Numerical Accuracy. Table 8.1 presents an analysis of the root-mean-squared error (RMSE)

and SNR for the IDFT generated designs. For each, 512 IDFT128 computations are performed

on OFDM input symbols, and RMSE and SNR are calculated for each vector. For each design,

Table 8.1 reports the mean and standard deviation of the 512 values for RMSE and SNR, calculated

as follows, where S is the measured output vector and T is the expected output vector:

RMSE =

√
√
√
√

N−1∑

n=0

|Sn − Tn|2

N

SNR =

∑N−1
n=0 |Tn|

2

∑N−1
n=0 |Sn − Tn|2

A two bit increase in fixed-point precision causes the maximum magnitude of each data word

to increase by a factor of 4. Table 8.1 illustrates that such an increase yields a decrease in RMSE of

approximately a factor of 4 and an increase in SNR of approximately a factor of 42 = 16.

Pruning. Depending on which subcarriers are utilized, a number of IFFT inputs will always

be zero. Because this study considers fully unrolled designs, this makes it possible to prune out a

number of unnecessary operations from the early stages of the IFFT, resulting in a modest decrease

in required area. This is done by adding a wrapper around the IFFT core and allowing the synthesis

tool to perform simplification. In Figure 8.2 (white data markers), this technique is evaluated on

both IFFT algorithms discussed earlier, assuming that only a quarter of the IFFT inputs are nonzero.

On average, this results in an 8.3% decrease in the number of slices.
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8.2 ASIC Design Study

Further work in [39] presents a design study of a higher-throughput OFDM transceiver synthesized

as an ASIC. This transceiver assumes signal converters (digital-to-analog and analog-to-digital con-

verters) that process 28 billion samples per second, with 6 bit resolution on the D/A and 8 bit

resolution on the A/D. This higher precision allows more channels of the transmitted signal to carry

data, allowing a higher overall data rate. The system encodes 100 bits per 128 transmitted samples,

giving an overall data rate of 28× 100/128 = 21.875 gigabits per second. The paper [39] then per-

forms simulation to determine the fixed point precision needed: 10 bits for the transmitter (which

includes IDFT128) and 14 bits for the receiver (which includes DFT128.

Next, Spiral generates twenty different IDFT and DFT implementations (with 10 bit and 14

bit fixed point data types, respectively). All designs are based on the Iterative Cooley-Tukey FFT

algorithm with varying radices (2.15). The designs considered process either 32, 64, or 128 samples

per cycle, and thus must be clocked at 875, 437.5, or 218.75 MHz (respectively) in order to meet

the throughput requirement of 28 Gsamples/s. To meet the OFDM performance target, each design

must perform approximately 1012 fixed point operations per second. The designs that process more

samples per cycle have a higher area but are clocked at a lower frequency and thus consume less

power. This allows a tradeoff between power consumption and area.

Each design is synthesized using Synopsys Design Compiler Ultra targeting a commercial 65nm

standard cell library. Transceivers are constructed from each generated IDFT and DFT implemen-

tation by integrating appropriate modules for QPSK mapping, de-mapping, and clipping/scaling.

Then, each is synthesized and its frequency, area, and power are estimated. Figure 8.3 shows De-

sign Compiler’s reported area and power consumption for each design. Each point on the graph

indicates the power (y-axis) and area (x-axis) of a single implementation of the transmitter or re-

ceiver. The solid lines indicate the Pareto-optimal set of designs (the set of designs that give the

best tradeoff between power and area). The transmitter’s Pareto-optimal set contains five designs,

ranging from 0.72 mm2 and 0.44 W to 0.95 mm2 and 0.17 W. The receiver’s Pareto-optimal set

contains three designs ranging from 1.14 mm2 and 0.73 W to 1.35 mm2 and 0.24 W.

Typically, power is the most critical constraint within the system, so one would choose the

lowest/rightmost design from the Pareto-optimal set. However, if the system area is constrained,
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Figure 8.3: Power versus area for OFDM transmitters and receivers.

a smaller (yet higher power) design could be selected. The most power-efficient transmitter con-

sumes 7.6 mW/Gb/s, while the most power-efficient receiver consumes 10.7 mW/Gb/s. In both the

transmitter and receiver, the most power-efficient designs process 128 samples per cycle at 218.75

MHz, while the most area-efficient designs process 32 samples per cycle at 875 MHz. For these

architectures, the mixed radix Cooley-Tukey FFT algorithm has lowest cost when radices 8 and 16

are used. Simpler algorithms, such as the commonly-seen radix 2 FFT have higher computational

cost and correspond to the least efficient points seen on the graph.
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Related Work

9.1 Formula-based Hardware Representation

The tensor formula language used in this thesis has been previously used as a way to describe

transform algorithms. For example [1, 7, 4] use this type of representation to discuss software

implementations of the DFT.

Although the work presented in this thesis (published in part in [17]) was the first to extend the

tensor formula language to support a general class of hardware implementations, variants of this

mathematical language have been used in the process of constructing special purpose hardware for

the DFT. For example, [40] uses the tensor product-based mathematical language in the process of

designing a universal DFT processor that is scalable in the number of processing elements. More

recently, [41] studies pipelined architectures, using the tensor language to describe a family of FFT

algorithms and providing a hardware interpretation of certain formula constructs. For the discrete

cosine transform, [14, 15, 16] use the tensor formula representation as a way to algorithms suitable

for pipelined hardware implementation.

9.2 Hardware Implementation of Transforms

This section gives an overview of work in the literature on hardware architectures for transforms.

First, Sections 9.2.1, 9.2.2, and 9.2.3 discuss fully-folded, pipelined, and other flexible implementa-

tions of the DFT. Section 9.2.4 examines work that eliminates or reduces the number of multipliers
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needed in a DFT implementation, and Section 9.2.5 discusses systolic array architectures for the

DFT. Then, Sections 9.2.6 and 9.2.7 show examples of recent work on non-power-of-two sized

DFTs and other transforms.

9.2.1 Fully-Folded DFT Processors

The simplest hardware implementations of the discrete Fourier transform are fully-folded architec-

tures that use a small processing element sequentially over the course of the transform computation.

The cost and performance of these fully-folded processors is closest to the designs in this thesis

with full streaming and iterative reuse.

An early example can be found in [42], which consists of a complex butterfly and multiplier,

two memories, and control logic. This idea is extended in [43], which implements a radix r FFT

algorithm on a system with one DFTr basic block and 2r memories.

The basic block in this type of system is improved in [44], which partitions the data into two

memory banks. Then, two data can be read, pass through a butterfly unit, and be written on every

cycle. The address and bank locations are computed using inexpensive bit arithmetic on the vector

element number. In this way, this work can be viewed as a predecessor of the streaming permutation

implementations in [20].

More recently, [45] partitions the memory in a system of this type into a small cache and a larger

main memory. Then, the FFT factorization is chosen to make best use of the data in the local cache.

Architectures of this type have also been implemented on FPGA. For example, [46] uses two

radix 4 processing elements and three banks of memory on a Xilinx Virtex-II FPGA.

9.2.2 Pipelined DFT Implementations

A common structure for implementing the DFT is the pipelined (or streaming) architecture. These

designs are popular because they are relatively easy to implement and typically obtain much higher

performance than the fully-folded processors discussed above. Additionally, designs of this type are

easy to integrate into surrounding systems; typically they take in and emit one complex word per

cycle. This type of architecture corresponds to designs with no iterative reuse and full streaming

reuse (width w = 1). Although this is narrower than the smallest width considered in the designs
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architecture throughput multipliers mult. adders adder apx. mem.

(words / cyc.) util. util. size

R2SDF 1 log2 n − 2 50% 2 log2 n 50% n
R2MDC 1 log2 n − 2 50% 2 log2 n 50% 1.5n
R2MDC-mod 2 log2 n − 2 100% 2 log2 n 100% 9.5n
Spiral radix 2 w (w/2)(log2 n − 2) 100% w log2 n 100% 6n

R4SDF 1 log4 n − 1 75% 8 log4 n 25% n
R4MDC 1 3(log4 n − 1) 25% 8 log4 n 25% 2.5n
R4MDC-mod 4 3(log4 n − 1) 100% 8 log4 n 100% 18.5n
R4SDC 1 log4 n − 1 75% 3 log4 n 75% 2n
R22SDF 1 log4 n − 1 75% 4 log4 n 50% n
Spiral radix 4 w (3w/4)(log4 n − 1) 100% 2w log4 n 100% 4.67n

All multipliers and adders operate on complex data, and all implementations have bit/digit-reversed output.

Table 9.1: Summary of pipelined DFT architectures.

of this thesis, typically these designs sacrifice performance/cost scalability. That is, most can be

thought of as architectures for the special case of w = 1.

There are two common types of pipelined DFT architectures: single-path delay-feedback (ab-

breviated SDF) and single-path or multi-path delay-commutator (abbreviated SDC and MDC), us-

ing the terminology from [47]. In each case, delay elements and switches are used to buffer and

reorder the data streams as required by the algorithm. Table 9.1 summarizes the costs and through-

put of different versions of these designs and compares them with the closest designs from the

framework described in this thesis. In all cases, the designs in Table 9.1 take data in natural input

order and produce it in radix 2 or 4 digit reversed order (that is, reordered by Rn
r ).

Early examples of SDF architectures can be found in [48], which implements a simple radix-2

pipeline, and in [49] which utilizes a similar structure, but reduces the amount of memory required

(see line labeled “R2SDF” in Table 9.1).

The MDC architecture is introduced in [50] has a higher memory cost with the same throughput

for one DFTn (line “R2MDC” in Table 9.1). However, this technique is able to compute two inter-

leaved DFTs concurrently with double the throughput. In other words, it can compute DFTn⊗I2

with a throughput of two words per cycle and no additional overhead. In order to convert this into

a traditional throughput-driven streaming design like those considered in this thesis, the expression

can be rewritten

DFTn⊗I2 → L2n
n · (I2 ⊗DFTn) · L2n

2 .

The streaming stride permutations L can then be computed using the bit-matrix-based streaming
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permutation method described in Chapter 5.2. This design, with added overhead for the L per-

mutations, is given in line “R2MDC-mod” in Table 9.1). Although this allows speedup with no

arithmetic cost, the memory cost is substantial. In the literature, this technique is not considered for

this architecture; existing papers only consider this design for the interleaved case.

These techniques can also be extended to higher radices, as shown in the table’s “R4SDF” and

“R4MDC” lines. As shown, the radix 4 SDF architecture reduces the number of multipliers while

increasing the number of adders. The radix 4 MDC architecture [51] has higher costs, but again can

be used with interleaved data (computing DFTn⊗I4) which can be rewritten as in the radix 2 case

above (indicated “R4MDC-mod” here).

Further work then expands on these designs. In [52], the commutator designs of [50, 51] are

simplified, producing the radix 4 SDC design “R4SDC”. This design reduces both arithmetic and

memory requirements, but it does not have the property of the radix r MDC architecture that allows

it to compute DFTn⊗Ir with no additional hardware cost.

He and Torkelson [47] summarize various types of FFT pipeline processor architectures and

propose a “radix 22” single-path delay feedback (SDF) architecture that combines the processing

element structure of earlier radix 2 designs with the higher-level implementation of a radix 4 algo-

rithm. This algorithm and datapath are used by Xilinx in the LogiCore FFT IP that this thesis uses

as a benchmark in Section 7.3. Essentially, [47] maps a radix 4 algorithm onto an SDF pipeline

with basic blocks that are more similar to radix 2 basic blocks than previous techniques had used.

In a straightforward implementation of an SDF radix 4 algorithm, there would be added complexity

because the algorithm is not mapped well to a hardware structure that matches the overall pipeline.

This distinction between radix 2 and radix 4 basic blocks (and their utilization) is only relevant in

this manner type of limited-utilization pipeline. The drawbacks of going to higher radices described

in [47] are not encountered when using the techniques proposed in this thesis.

Each of these architectures has throughput of 1, 2 or 4 complex words per cycle. In contrast,

the fully-streaming designs from this thesis have a throughput of w per cycle (w = 2k, w | n, and

w ≥ r).

To better illustrate the comparison between the different pipelined architectures, Table 9.2 nor-

malizes the throughput, multipliers, adders, and approximate memory for the considered designs.

The designs built generated by Spiral compare well with the existing designs. Relative to the
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architecture throughput mults adders apx. memory

R2SDF 1 2 1.33 1
R2MDC 1 2 1.33 1.5
R2MDC-mod 2 2 1.33 9.5

Spiral radix 2 w w 2w/3 6

R4SDF 1 1 2.67 1
R4MDC 1 3 2.67 2.5
R4MDC-mod 4 3 2.67 18.5

R4SDC 1 1 1 2
R22SDF 1 1 1.33 1
Spiral radix 4 w 3w/4 2w/3 4.67

Table 9.2: Summary of pipelined DFT architectures, normalized.

R2SDF architecture, the proposed radix 2 designs have w× higher throughput with w/2× the num-

ber of adders, w/2× the number of multipliers, and 6× the number of memories. So, for w > 4, the

proposed method yields superlinear speedup in all metrics. For w ≤ 4, it yields superlinear speedup

except with respect to memory required. Relative to R2MDC-mod, the proposed radix 2 design has

w/2× the speedup with w/2× the multiplier and adder cost at 63% of the memory requirement.

For radix 4, Table 9.2 shows similar comparisons. Compared to the R22SDF architecture, the

proposed design has a speedup of w with 3w/4× multipliers, w/2× adders, and 4.67 times the

memory. So, for w > 4, the proposed design yields superlinear speedup in all metrics. For w = 4,

it yields superlinear speedup except with respect to memories.

Lastly, [41] presents a technique (related to the tensor formula language used in this thesis) to

represent arbitrary radix SDC and SDF datapaths. These techniques could be incorporated into the

generation system considered in this thesis.

9.2.3 Increasing Flexibility

In addition to the sequential processors and narrow pipelines discussed above, some work in the

literature has allowed more freedom in the width and depth of a datapath.

For example, [53] includes discussion of a parallel iterative architecture that consists of one

fully parallel stage of the FFT with full feedback. That is, full iterative reuse (depth d = 1) and no

streaming reuse.

Another type of design is shown in [54], which maps the Pease FFT algorithm onto a rectangular

array processors consisting of one column of processing elements connected with an interconnection
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network that performs Ln
n/2. Other work [55, 56] are similar ([56] considers arbitrary radix r).

Wider versions of pipeline architectures are considered in [23], which presents a method to take

a standard pipelined FFT implementation and increase its streaming width resulting in what they call

a “partial column” implementation. With this approach, the difficult problem becomes performing

streaming stride permutations with non-trivial streaming width. In this work, a technique with

memories and interconnection networks is provided to perform L2n

2s with streaming width 2k where

k ≥ n − s. As shown in [20], the connection networks used in [23]’s solution are more expensive

than those used in the bit-matrix streaming permutation method (see Chapter 5.2).

Reference x[40] implements the Dimensionless FFT algorithm, which allows multiple dimen-

sions of DFT to be computed only by changing the constants stored in diagonal matrices. For

example, one implementation can compute DFT16, (DFT2⊗DFT8), (DFT4⊗DFT4), and so

on. The architecture considered here is similar to [54], with a set of processors in parallel connected

via interconnection network.

Reference [57] studies the energy-efficiency of FFT implementations on a Xilinx Virtex-II Pro

FPGA, considering pipelined and iterative reuse designs. In [58], floating point implementations

on FPGA are considered; all designs examined use streaming reuse of parameterizable width, and

iterative reuse with depth 1, 2, or log2 n (that is, no iterative reuse).

Other recent works [59] and [60] use high-level synthesis techniques to get architectural flexi-

bility from one high-level description. These are discussed below in Chapter 9.3.

9.2.4 Multiplierless Implementations

Some prior work has focused on avoiding multiplication within hardware implementations of the

DFT. For example, [61], [62], and [63] replace the complex multipliers in the SDF pipelined ar-

chitectures and parallel pipeline architectures (as discussed above) with CORDIC complex rotators.

This eliminates the need for complex multipliers and lookup tables. More recently, [64] revisited

these techniques and reduced the cost of the rotator unit. Replacing multipliers with CORDIC ro-

tators is orthogonal to the parameters studied in this thesis; such techniques could be applied as an

alternate method for implementing the diagonal matrices that contain twiddle factors.

Other work has focused on reducing the number of multipliers in other ways. In [65], a nearly

multiplierless implementation of an FFT is proposed that reformulates the transform as a cyclic
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convolution. The result is a width w = 1 pipeline that requires only two multipliers but 3n/4 + 13

adders to compute DFTn. In practice, this technique is only feasible for small problem sizes. At

n = 1024, [65] requires 2 multipliers and 781 adders (versus 8 multipliers and 20 adders for the

simple radix 2 SDF datapath [49] discussed above).

A benefit of the technique in [65] is increased transform accuracy for the same fixed point

input/output precision. For example, the authors show that a standard multiplier-based pipeline

needs 28 bits to match the precision of their proposed 22 bit design. They further show that for

small sizes (n = 16, 32, 64), their technique requires less resources than the R2SDF pipeline.

9.2.5 Systolic Arrays

The DFT has also been implemented using systolic arrays. Often, these implementations use

O
(
n2
)

algorithms that compute the DFT as a matrix-vector multiplication or other similar tech-

nique [66, 67, 68]. The advantage of a systolic array is that it is parallel and regular; the algorithms

used in these papers map well to this type of system. However, this comes at the cost of higher

arithmetic cost (number of operations per transform). This disparity grows greatly as the problem

size increases.

Another approach [69] combines an O(n log n) FFT algorithm at the highest level, with a lower-

level systolic array to compute the basic blocks. In the end, techniques like this end up structurally

similar to other DFT architectures such as those discussed above.

9.2.6 Non-two-power sizes

Most previous work on hardware implementations of non-power-of-two sized DFTs has focused on

producing a solution for a specific situation (a given problem size and performance requirement).

For example, [70] and [71] consider the specific problem sizes and performance requirements of the

Digital Radio Mondiale (DRM) radio broadcasting standard, while [72] presents an FPGA-based

pipeline design of a 3,780 point inverse DFT used in a digital television standard.

A more flexible solution is given in [73], which uses a convolution-based approach to provide

an algorithm and architecture for computing the DFT when the problem size is a prime number or a

product of primes.
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9.2.7 Other Transforms

Similar implementations of other transforms also appear in the literature. For example, [74] maps

an RDFT algorithm to a datapath similar to the SDF pipelines commonly seen for the DFT.

Another RDFT implementation appears in [75], where an algorithm similar to the complex half-

size RDFT algorithm (2.19) is used to compute RDFTn using DFTn/2 and post-processing. This

paper then computes DFTn/2 using a fully-folded DFT processor similar to the ones discussed in

Section 9.2.1.

Other papers explore these types of implementations of discrete cosine and sine transforms

(DCTs and DSTs). For example, [15] derives constant geometry algorithms for DCTs and DSTs

that are similar in structure to the Pease FFT (2.13). In [16], this algorithm is simplified for the

special case of DCT-2. Later, [14] extends these ideas further to enable pipelined architectures for

DCTs and DSTs of type 2, 3, and 4. This is the source of the DCT-2 algorithm presented in this

thesis as (2.23) and evaluated in Section 7.5.3.

9.3 High-Level Synthesis

High-level synthesis (HLS) is an automated process that takes as input a behavioral description of

a digital system and produces a register-transfer level implementation. By separating algorithm

specification from implementation issues, HLS aims to ease the burden on designers by allowing

them to ignore lower-level implementation issues. Further, by allowing multiple datapaths to be

built from the same specification, HLS aims to lower the cost of design space exploration. A recent

overview of HLS can be found in [76].

Many commercial products for high-level synthesis are available, based on different input lan-

guages. Many are based on subsets of C, C++, or SystemC, including Catapult C Synthesis (Mentor

Graphics), Handel-C (Mentor Graphics), Synphony (Synopsys), Cadence C-to-Silicon Compiler,

and Cynthesize (Forte Design Systems). Bluespec Compiler is based on Bluespec SystemVerilog,

which extends a synthesizable subset of SystemVerilog to include atomic transactions. Lastly, other

HLS tools are based on graphical environments, such as NI LabVIEW (National Instruments) and

Simulink HDL Coder (MathWorks).

Some recent papers have explored the benefits of using HLS to implement the DFT in FPGA



9.4. Streaming Permutations 124

or ASIC. First, [77] implements the radix 22 SDF structure from [47] on an FPGA using a C-based

high-level synthesis language called Handel-C. This design is parameterizable in the number of

bits to use for data and twiddle factors, the transform size (number of points), and scaling factors.

However, it does not consider any architectural tradeoffs.

Reference [59] presents an ASIC transmitter for the 802.11a wireless standard written in Blue-

spec SystemVerilog. The most computationally expensive portion of this transmitter is the IDFT64.

This implementation is of the radix-2 Cooley-Tukey FFT, and it uses the capabilities of the HLS

language to allow the design to be parameterizable in streaming width and iterative reuse depth.

This paper also examines the tradeoff between area and power at a fixed performance target. Simi-

lar to the evaluation this thesis performs in Section 7.4.3, [59] obtains a tradeoff between area and

power at a fixed performance target.

Similarly, [60] targets the DFT on an FPGA, expressing a radix 2 FFT algorithm as a double

loop using National Instruments LabVIEW. Each loop can then be unrolled by the tool. The outer

loop corresponds to the FFT’s stages; unrolling corresponds to increasing the depth of the imple-

mentation. Similarly, the inner loop corresponds to the individual processing elements within the

stage; unrolling this loop corresponds to increasing the streaming width.

These papers present a glimpse of the strength of high-level synthesis: by expressing an al-

gorithm at a higher level of abstraction, the tool is able to aid in the low-level design of multi-

ple architectures. However, the HLS tools are not well-equipped to handle the algorithmic-level

exploration and optimizations made possible by Spiral’s ability to manipulate algorithms and ar-

chitectures within the same mathematical language. For example, although LabVIEW can manipu-

late [60]’s radix 2 FFT algorithm into designs with different width and depth, it is not able to convert

to a radix 4 algorithm or a mixed radix implementation.

9.4 Streaming Permutations

The work on streaming permutations presented in Chapter 5 is unique in that the methods pre-

sented are the only ones that design RAM-based datapaths for a generalized family of streaming

permutations ([19] is applicable to any streaming permutation, and [20] can apply to an important

subset). The only other fully-general streaming permutation method is [25], which builds streaming
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permutation structures using a register allocation method, resulting in a large number of individual

registers connected with switches or multiplexers. Others consider just a small subset of streaming

permutations: in [78, 79, 22], a method based on FIFOs and switches is used to build streaming

stride permutations (L in this thesis) with two-power size. In [23], [80], and [81], subsets of stream-

ing stride permutations are considered in the context of the DFT.



Chapter 10

Conclusions and Future Work

10.1 Overview

This thesis presented the Spiral hardware generation framework, an automated system based on a

mathematical language that produces hardware cores for computing linear signal processing trans-

forms. This system automatically implements hardware designs across a wide space of cost/perfor-

mance tradeoffs, allowing the user to choose the implementation that best fits his or her application.

The key to this system lies in the mathematical expression of relevant degrees of freedom, both in

the space of transform algorithms and in the space of sequential datapaths.

Chapter 2 presents relevant background on linear transforms and their algorithms. Transforms

are represented as matrix-vector products, and algorithms are decompositions of transform matrices

into products of structured sparse matrices. These decompositions can be written using a mathe-

matical language based on linear algebra.

Chapter 3 shows how structure within transform algorithms can be mapped to two types of

sequential datapaths. First, the tensor product Im⊗An can be implemented as m parallel instances

of An or as a system that employs streaming reuse, which would result in < m parallel instances of

An with the data vector streamed through the system over multiple cycles. This can be generalized

to allow dependence on an iteration variable: Im ⊗ℓ An
ℓ . The cost of this implementation depends

on the degree of similarity between the An
ℓ matrices.

The iterative matrix product
∏m−1

ℓ=0 An
ℓ can be implemented as a cascade of A blocks (m deep)

or as a system with iterative reuse, where the data vector feeds back and iterates over a shallower

126
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system (< m deep). Like streaming reuse, iterative reuse allows dependence on variable ℓ but this

dependence can increase the system cost. Section 3.4 presents an example system that uses both

streaming and iterative reuse, and explores the effect they have on cost and performance.

Chapter 3 defines variants of ⊗ and
∏

that allow a formula to explicitly specify the degree of

streaming reuse and iterative reuse in a formula. The result is a new extended formula language

that allows specification of an algorithm and a sequential reuse datapath on which to compute it. By

formally capturing the desired freedoms at both algorithm and datapath levels, this language enables

automatic compilation and exploration.

Chapter 4 describes the automated compilation and optimization process. First, the system

takes as input a problem (for example, DFT1024) and hardware directives that specify the amount

and type of sequential reuse requested (as tags). Then, the system decomposes the base transform

matrix using one or a combination of several transform algorithms, making choices based on the

hardware directives supplied. Then, the algorithm is rewritten (based upon the supplied tags) into a

formula in a hardware specification language that describes both algorithm and sequential datapath.

Lastly, the formula is passed to a hardware generation stage that builds the corresponding datapath

in synthesizable register transfer level Verilog.

Chapter 5 addresses an important challenge that arises when mapping transform algorithms to

sequential datapaths: streaming permutations. A permutation is a fixed reordering of data elements,

and a streaming permutation is one where the n data elements stream in and out of the system at a

fixed rate of w words per cycle. In order to perform a permutation on streaming data it is necessary

to use memory to reorder the position of data within the stream (reorder “in time”). In the simplest

case where w = 1, this is easy: a single memory with one write port and one read port is sufficient.

However, as w grows, the use of multiported memory quickly become infeasible. So, it is necessary

to use multiple independent memories. However, now a new challenge arises: how to orchestrate

the data’s writes and reads in and out of memory while guaranteeing that no port conflicts will

occur. Chapter 5 discusses solutions to this problem, including the “bit matrix” method [20] and the

“general streaming permutation” method [19], which are used by Spiral in different situations.

Next, Chapter 6 revisits transform algorithms in the context of the sequential reuse hardware

paradigm considered in this thesis. It discusses algorithms for the DFT (of two-power and non-two-

power size), RDFT, two-dimensional DFT, and DCT. For each algorithm, it explains how sequential
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reuse can be applied, and with what restrictions. When multiple algorithms can be applied, it

discusses how the compiler’s formula generation stage chooses between them.

Chapter 7 presents results from FPGA and ASIC synthesis of a space of designs generated using

Spiral. For each, it illustrates the space of cost/performance tradeoffs obtainable, and compares

with benchmarks where available. This chapter demonstrates designs across several transforms

(DFT, 2DDFT, RDFT, DCT2), two platforms (65nm standard cell ASIC and FPGA), and two data

types (fixed point and floating point). The FPGA results show performance versus area (in units

of FPGA slices, BRAMs, and DSP slices). The ASIC results compare performance against area

and power. They also explore the effect of frequency scaling on power, area, and performance.

When targeting a fixed performance goal, Spiral is able to generate multiple designs that meet the

goal while exhibiting a tradeoff between power and area: larger designs can be clocked at lower

frequencies, reducing power.

Chapter 8 evaluates Spiral-generated designs used within orthogonal frequency-division mul-

tiplexing (OFDM) transceivers for optical networks. The freedoms in hardware and algorithm al-

lowed by Spiral are exploited to determine the implementations best suited for this challenging

application.

Lastly, Chapter 9 discusses related work in the literature, including work on hardware imple-

mentation of transforms, high-level synthesis, and permutations. This chapter includes comparisons

between the most commonly-seen DFT architectures and those that are produced using the methods

described in this thesis.

10.2 Directions for Future Work

This thesis concludes with a brief discussion of some possible future extensions of this work.

Interfacing with off-chip memory. The architectures considered in this thesis require that the

entire data vector reside on-chip at once. That is, the memory elements in buffers and streaming per-

mutations must store the entire data vector using on-chip memories. This means that the minimum

area of a design produced by Spiral depends on the transform size, regardless of the performance

requirement.

A promising direction for future work is to expand the generator to include designs that interact
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with off-chip memory. This would require changes to both the hardware paradigm and the types

of algorithms considered, but would use the existing infrastructure to generate the lower-level im-

plementations. This type of memory streaming is considered in [82, 83], which extends Spiral to

generate software for distributed memory architectures.

Register- and FSM-based basic blocks. The sequential hardware paradigm explored in this

work uses dense matrices to specify computational basic blocks. That is, each processing element

has an associated matrix and contains an arithmetic unit for each operation implied by the base

matrix. For example, consider the matrix






1 1

1 −1




 .

In this thesis, this block would always be implemented with one adder and one subtractor; it would

have a minimum streaming width of w = 2.

However, if lower throughput such as w = 1 is desired, another implementation could be pro-

duced that uses: one adder/subtractor, three data registers, a two-bit counter, and two control mul-

tiplexers. Data would be buffered in registers until it is consumed, and a small finite state machine

(FSM) would provide control. Reducing the throughput requirement further (for example one word

every two cycles) could lead to further simplifications.

In this way, a more flexible set of register- and FSM-based datapaths could serve as compu-

tational elements. Additionally, this type of technique can lead to less dependence on algorithmic

regularity to obtain cost/performance tradeoffs. Further, this extension may be particularly useful if

this work were extended outside the domain of linear transforms.

Extension to other kernels. The mathematical language used in this thesis represents the prob-

lem to be computed as a matrix-vector product. So, the problems that can be considered are limited

to the domain of linear transforms. However, the types of algorithmic structure and dataflow that

this thesis exploits appear in algorithms for other types of problems. Recent work [84] introduces

Operator Language (OL), a language related to the one used in this thesis, which can represent

non-linear problems while still mathematically capturing structure within the algorithm. [84] uses

OL to generate software for Viterbi decoders, synthetic aperture radar image reconstruction, sorting
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networks, matrix-matrix multiplication, and circular convolution. The system in this thesis may be

able to be extended to support a subset of OL, allowing hardware generation for a wider space of

problems.

Improvements to streaming permutation structures. This thesis uses two methods for de-

signing datapaths to perform permutations on streaming data: the bit matrix method [20] and the

general method [19]. As explained in Chapter 5, the bit matrix method generates switching net-

works and control/addressing logic specifically for the given permutation. The general streaming

permutation method instead uses a generic all-to-all network, and uses lookup tables to store all of

the necessary control and address values. So, it is trivial to use the general method to construct one

structure to perform multiple permutations (in the event that a streaming permutation is iteratively

reused) by extending the lookup tables to store precomputed constants for each of the permutations

desired. However, it may be possible to extend the bit matrix method for the same purpose at lower

cost.

Another possible extension is an improvement to the general streaming permutation method.

When generating designs using this technique, a matrix representing data locations is decomposed

into a sum of permutation matrices, as shown in (5.3):

πw(Pn) = β0Q0 + β1Q1 + · · ·+ βk−1Qk−1,

where πw(Pn) is a w × w semi-magic square (the sum of each of its rows and columns is n/w),

each of the Qi are permutation matrices, and the βi are integers > 0. Given a πw(Pn), the values of

Qi and βi are not unique: the matrix can be decomposed in multiple ways.

Currently, Spiral performs this factorization by finding any permutation contained in πw(Pn)

and subtracting it as many times as possible (that is, finding a βi and Qi). However, the overall cost

of the implementation’s connection network (T in Figure 5.3) is related to the set of permutations

found here. In the worst case, a full generic connection network must be implemented to support all

of the Qi, consisting of w′ logw w′ − w′ + 1 switches, where w′ = 2⌈log2 w⌉ and w is the streaming

width. However, if πw(Pn) can be factorized using a subset of permutations, a simplified connection

network with approximately half the cost could be used (such as those in [85, 86, 87]).

Lastly, both streaming permutation methods described here require double-buffering. This dou-
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bles the memory requirement of each implementation so the system can begin buffering one input

vector while the previous vector streams out. This overhead may be eliminated for some permuta-

tions if two schedules can be produced which overlap such that schedule 1 reads data from the exact

locations that schedule 2 is about to write to. Both permutation methods considered in this thesis

may be able to be extended to support this for a subset of permutations.

Hardware/software co-design. In addition to the hardware generation work described in this

thesis, Spiral also generates software implementations of transforms for many platforms [4]. Thus,

a natural direction for future work is in the co-design of hardware and software. Preliminary work

on this topic has been presented in [88], which uses a library of FPGA implementations of the DFT

generated by Spiral (using the techniques described in this thesis) as accelerators for an embedded

processor. Given a set of accelerators, Spiral searches across a family of recursive algorithms in

order to generate a library of implementations that use both hardware and software. Extensions

to this work could include a larger search space of possible hardware implementations and a more

sophisticated family of parameterized processors, all of which could be tuned based on desired

system characteristics, such as off-chip memory bandwidth or power and area budgets.

Resource estimation. Spiral is currently able to provide resource counts from a hardware for-

mula, giving the number and type of arithmetic and memory units. However, it could be extended

to estimate area in much more detail. This could significantly speed up the exploration process by

allowing designers to find the points that best fit their implementation goals more easily. Previous

work [21] performed detailed area estimation for designs generated using the Pease FFT with radix

2, streaming reuse of a parameterizable width, and iterative reuse of depth 1 on an FPGA.
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[19] P. A. Milder, J. C. Hoe, and M. Püschel, “Automatic generation of streaming datapaths for arbi-

trary fixed permutations,” in Proceedings of Design, Automation and Test in Europe, pp. 1118–

1123, 2009.
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